Ankyrin-2: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Citation bot (talk | contribs)
m Alter: journal. Add: bibcode. | You can use this bot yourself. Report bugs here. | Activated by User:Neko-chan | Category:Human proteins | via #UCB_Category
Line 6: Line 6:


==Function==
==Function==
Ankyrin-B is a member of the [[ankyrin]] family of proteins. [[ANK1|ankyrin-1]] has shown to be essential in normal function of erythrocytes;<ref>{{cite journal|last1=Eber|first1=SW|last2=Gonzalez|first2=JM|last3=Lux|first3=ML|last4=Scarpa|first4=AL|last5=Tse|first5=WT|last6=Dornwell|first6=M|last7=Herbers|first7=J|last8=Kugler|first8=W|last9=Ozcan|first9=R|last10=Pekrun|first10=A|last11=Gallagher|first11=PG|last12=Schröter|first12=W|last13=Forget|first13=BG|last14=Lux|first14=SE|title=Ankyrin-1 mutations are a major cause of dominant and recessive hereditary spherocytosis.|journal=Nature Genetics|date=June 1996|volume=13|issue=2|pages=214–8|pmid=8640229|doi=10.1038/ng0696-214}}</ref> however, ankyrin-B and [[ANK3|ankyrin-3]] play essential roles in the localization and membrane stabilization of ion transporters and [[ion channel]]s in [[cardiomyocytes]].<ref name="ReferenceC"/><ref>{{cite journal|last1=Mohler|first1=PJ|last2=Rivolta|first2=I|last3=Napolitano|first3=C|last4=LeMaillet|first4=G|last5=Lambert|first5=S|last6=Priori|first6=SG|last7=Bennett|first7=V|title=Nav1.5 E1053K mutation causing Brugada syndrome blocks binding to ankyrin-G and expression of Nav1.5 on the surface of cardiomyocytes.|journal=Proceedings of the National Academy of Sciences of the United States of America|date=14 December 2004|volume=101|issue=50|pages=17533–8|pmid=15579534|doi=10.1073/pnas.0403711101|pmc=536011}}</ref>
Ankyrin-B is a member of the [[ankyrin]] family of proteins. [[ANK1|ankyrin-1]] has shown to be essential in normal function of erythrocytes;<ref>{{cite journal|last1=Eber|first1=SW|last2=Gonzalez|first2=JM|last3=Lux|first3=ML|last4=Scarpa|first4=AL|last5=Tse|first5=WT|last6=Dornwell|first6=M|last7=Herbers|first7=J|last8=Kugler|first8=W|last9=Ozcan|first9=R|last10=Pekrun|first10=A|last11=Gallagher|first11=PG|last12=Schröter|first12=W|last13=Forget|first13=BG|last14=Lux|first14=SE|title=Ankyrin-1 mutations are a major cause of dominant and recessive hereditary spherocytosis.|journal=Nature Genetics|date=June 1996|volume=13|issue=2|pages=214–8|pmid=8640229|doi=10.1038/ng0696-214}}</ref> however, ankyrin-B and [[ANK3|ankyrin-3]] play essential roles in the localization and membrane stabilization of ion transporters and [[ion channel]]s in [[cardiomyocytes]].<ref name="ReferenceC"/><ref>{{cite journal|last1=Mohler|first1=PJ|last2=Rivolta|first2=I|last3=Napolitano|first3=C|last4=LeMaillet|first4=G|last5=Lambert|first5=S|last6=Priori|first6=SG|last7=Bennett|first7=V|title=Nav1.5 E1053K mutation causing Brugada syndrome blocks binding to ankyrin-G and expression of Nav1.5 on the surface of cardiomyocytes.|journal=Proceedings of the National Academy of Sciences of the United States of America|date=14 December 2004|volume=101|issue=50|pages=17533–8|pmid=15579534|doi=10.1073/pnas.0403711101|pmc=536011|bibcode=2004PNAS..10117533M}}</ref>


Functional insights into ankyrin-B function have come from studies employing ankyrin-B [[chimeric protein|chimeric]] proteins. One study showed that the death/[[C-terminus|C-terminal]] domain of ankyrin-B determines both the subcellular localization as well as activity in restoring normal [[inositol trisphosphate receptor]] and [[ryanodine receptor]] localization and [[cardiomyocyte]] [[contractility]].<ref name="ReferenceA"/> Further studies have shown that the beta-hairpin loops within the [[ankyrin repeat]] domain of ankyrin-B are required for the interaction with the [[inositol trisphosphate receptor]], and a reduction of ankyrin-B in neonatal [[cardiomyocytes]] reduces the [[half-life]] of the [[inositol trisphosphate receptor]] by 3-fold and destabilizes its proper localization; all of these effects were rescued by reintroducing ankyrin-B.<ref name="ReferenceB">{{cite journal|last1=Mohler|first1=PJ|last2=Davis|first2=JQ|last3=Davis|first3=LH|last4=Hoffman|first4=JA|last5=Michaely|first5=P|last6=Bennett|first6=V|title=Inositol 1,4,5-trisphosphate receptor localization and stability in neonatal cardiomyocytes requires interaction with ankyrin-B.|journal=The Journal of Biological Chemistry|date=26 March 2004|volume=279|issue=13|pages=12980–7|pmid=14722080|doi=10.1074/jbc.m313979200}}</ref> Moreover, a specific sequence in ankyrin-B (absent in other ankyrin [[isoform]]s) folds as an amphipathic [[alpha helix]] is required for normal levels of [[sodium-calcium exchanger]], [[sodium potassium ATPase]] and [[inositol triphosphate receptor]] in [[cardiomyocytes]], and is regulated by [[DNAJB1|HDJ1/HSP40]] binding to this region.<ref name="ReferenceD">{{cite journal|last1=Mohler|first1=PJ|last2=Hoffman|first2=JA|last3=Davis|first3=JQ|last4=Abdi|first4=KM|last5=Kim|first5=CR|last6=Jones|first6=SK|last7=Davis|first7=LH|last8=Roberts|first8=KF|last9=Bennett|first9=V|title=Isoform specificity among ankyrins. An amphipathic alpha-helix in the divergent regulatory domain of ankyrin-b interacts with the molecular co-chaperone Hdj1/Hsp40.|journal=The Journal of Biological Chemistry|date=11 June 2004|volume=279|issue=24|pages=25798–804|pmid=15075330|doi=10.1074/jbc.m401296200}}</ref>
Functional insights into ankyrin-B function have come from studies employing ankyrin-B [[chimeric protein|chimeric]] proteins. One study showed that the death/[[C-terminus|C-terminal]] domain of ankyrin-B determines both the subcellular localization as well as activity in restoring normal [[inositol trisphosphate receptor]] and [[ryanodine receptor]] localization and [[cardiomyocyte]] [[contractility]].<ref name="ReferenceA"/> Further studies have shown that the beta-hairpin loops within the [[ankyrin repeat]] domain of ankyrin-B are required for the interaction with the [[inositol trisphosphate receptor]], and a reduction of ankyrin-B in neonatal [[cardiomyocytes]] reduces the [[half-life]] of the [[inositol trisphosphate receptor]] by 3-fold and destabilizes its proper localization; all of these effects were rescued by reintroducing ankyrin-B.<ref name="ReferenceB">{{cite journal|last1=Mohler|first1=PJ|last2=Davis|first2=JQ|last3=Davis|first3=LH|last4=Hoffman|first4=JA|last5=Michaely|first5=P|last6=Bennett|first6=V|title=Inositol 1,4,5-trisphosphate receptor localization and stability in neonatal cardiomyocytes requires interaction with ankyrin-B.|journal=The Journal of Biological Chemistry|date=26 March 2004|volume=279|issue=13|pages=12980–7|pmid=14722080|doi=10.1074/jbc.m313979200}}</ref> Moreover, a specific sequence in ankyrin-B (absent in other ankyrin [[isoform]]s) folds as an amphipathic [[alpha helix]] is required for normal levels of [[sodium-calcium exchanger]], [[sodium potassium ATPase]] and [[inositol triphosphate receptor]] in [[cardiomyocytes]], and is regulated by [[DNAJB1|HDJ1/HSP40]] binding to this region.<ref name="ReferenceD">{{cite journal|last1=Mohler|first1=PJ|last2=Hoffman|first2=JA|last3=Davis|first3=JQ|last4=Abdi|first4=KM|last5=Kim|first5=CR|last6=Jones|first6=SK|last7=Davis|first7=LH|last8=Roberts|first8=KF|last9=Bennett|first9=V|title=Isoform specificity among ankyrins. An amphipathic alpha-helix in the divergent regulatory domain of ankyrin-b interacts with the molecular co-chaperone Hdj1/Hsp40.|journal=The Journal of Biological Chemistry|date=11 June 2004|volume=279|issue=24|pages=25798–804|pmid=15075330|doi=10.1074/jbc.m401296200}}</ref>


Additional insights into ankyrin-B function have come from studies employing ankyrin-B transgenic animals. [[Cardiomyocytes]] from ankyrin-B (-/+) mice exhibited irregular spatial patterns and periodicity of [[calcium]] release, as well as abnormal distribution of the [[SERCA|sarcomplasmic reticular calcium ATPase]], [[ATP2A2|SERCA2]], and [[RYR2|ryanodine receptors]]; effects that were rescued by transfection of ankyrin-B.<ref>{{cite journal|last1=Tuvia|first1=S|last2=Buhusi|first2=M|last3=Davis|first3=L|last4=Reedy|first4=M|last5=Bennett|first5=V|title=Ankyrin-B is required for intracellular sorting of structurally diverse Ca2+ homeostasis proteins.|journal=The Journal of Cell Biology|date=29 November 1999|volume=147|issue=5|pages=995–1008|pmid=10579720|doi=10.1083/jcb.147.5.995|pmc=2169334}}</ref> Effects on [[RYR2|ryanodine receptors]] specifically were also rescued by a potent [[Ca2+/calmodulin-dependent protein kinase II]] inhibitor, suggesting that inhibition of [[Ca2+/calmodulin-dependent protein kinase II]] may also be a potential treatment strategy.<ref>{{cite journal|last1=DeGrande|first1=S|last2=Nixon|first2=D|last3=Koval|first3=O|last4=Curran|first4=JW|last5=Wright|first5=P|last6=Wang|first6=Q|last7=Kashef|first7=F|last8=Chiang|first8=D|last9=Li|first9=N|last10=Wehrens|first10=XH|last11=Anderson|first11=ME|last12=Hund|first12=TJ|last13=Mohler|first13=PJ|title=CaMKII inhibition rescues proarrhythmic phenotypes in the model of human ankyrin-B syndrome.|journal=Heart Rhythm|date=December 2012|volume=9|issue=12|pages=2034–41|pmid=23059182|doi=10.1016/j.hrthm.2012.08.026|pmc=3630478}}</ref><ref>{{cite journal|last1=Vatta|first1=M|last2=Chen|first2=PS|title=CaMKII and ryanodine receptor as new antiarrhythmic targets.|journal=Heart Rhythm|date=December 2012|volume=9|issue=12|pages=2042–3|pmid=22982962|doi=10.1016/j.hrthm.2012.09.011}}</ref> These mice also display several [[electrophysiology|electrophysiological]] abnormalities, including [[bradycardia]], variable [[heart rate]], long [[QT interval]]s, [[catecholaminergic polymorphic ventricular tachycardia]], [[syncope (medicine)|syncope]], and [[sudden cardiac death]].<ref>{{cite journal|last1=Mohler|first1=PJ|last2=Schott|first2=JJ|last3=Gramolini|first3=AO|last4=Dilly|first4=KW|last5=Guatimosim|first5=S|last6=duBell|first6=WH|last7=Song|first7=LS|last8=Haurogné|first8=K|last9=Kyndt|first9=F|last10=Ali|first10=ME|last11=Rogers|first11=TB|last12=Lederer|first12=WJ|last13=Escande|first13=D|last14=Le Marec|first14=H|last15=Bennett|first15=V|title=Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death.|journal=Nature|date=6 February 2003|volume=421|issue=6923|pages=634–9|pmid=12571597|doi=10.1038/nature01335}}</ref> Mechanistic explanations underlying these effects were explained in a later study conducted in the ankyrin-B (-/+) mice, which showed that reduction of ankyrin-B alters the transport of [[sodium]] and [[calcium]] and enhances the coupled openings of [[RYR2|ryanodine receptors]], which results in a higher frequency of [[calcium spark]]s and waves of [[calcium]].<ref>{{cite journal|last1=Camors|first1=E|last2=Mohler|first2=PJ|last3=Bers|first3=DM|last4=Despa|first4=S|title=Ankyrin-B reduction enhances Ca spark-mediated SR Ca release promoting cardiac myocyte arrhythmic activity.|journal=Journal of Molecular and Cellular Cardiology|date=June 2012|volume=52|issue=6|pages=1240–8|pmid=22406428|doi=10.1016/j.yjmcc.2012.02.010|pmc=3348355}}</ref>
Additional insights into ankyrin-B function have come from studies employing ankyrin-B transgenic animals. [[Cardiomyocytes]] from ankyrin-B (-/+) mice exhibited irregular spatial patterns and periodicity of [[calcium]] release, as well as abnormal distribution of the [[SERCA|sarcomplasmic reticular calcium ATPase]], [[ATP2A2|SERCA2]], and [[RYR2|ryanodine receptors]]; effects that were rescued by transfection of ankyrin-B.<ref>{{cite journal|last1=Tuvia|first1=S|last2=Buhusi|first2=M|last3=Davis|first3=L|last4=Reedy|first4=M|last5=Bennett|first5=V|title=Ankyrin-B is required for intracellular sorting of structurally diverse Ca2+ homeostasis proteins.|journal=The Journal of Cell Biology|date=29 November 1999|volume=147|issue=5|pages=995–1008|pmid=10579720|doi=10.1083/jcb.147.5.995|pmc=2169334}}</ref> Effects on [[RYR2|ryanodine receptors]] specifically were also rescued by a potent [[Ca2+/calmodulin-dependent protein kinase II]] inhibitor, suggesting that inhibition of [[Ca2+/calmodulin-dependent protein kinase II]] may also be a potential treatment strategy.<ref>{{cite journal|last1=DeGrande|first1=S|last2=Nixon|first2=D|last3=Koval|first3=O|last4=Curran|first4=JW|last5=Wright|first5=P|last6=Wang|first6=Q|last7=Kashef|first7=F|last8=Chiang|first8=D|last9=Li|first9=N|last10=Wehrens|first10=XH|last11=Anderson|first11=ME|last12=Hund|first12=TJ|last13=Mohler|first13=PJ|title=CaMKII inhibition rescues proarrhythmic phenotypes in the model of human ankyrin-B syndrome.|journal=Heart Rhythm|date=December 2012|volume=9|issue=12|pages=2034–41|pmid=23059182|doi=10.1016/j.hrthm.2012.08.026|pmc=3630478}}</ref><ref>{{cite journal|last1=Vatta|first1=M|last2=Chen|first2=PS|title=CaMKII and ryanodine receptor as new antiarrhythmic targets.|journal=Heart Rhythm|date=December 2012|volume=9|issue=12|pages=2042–3|pmid=22982962|doi=10.1016/j.hrthm.2012.09.011}}</ref> These mice also display several [[electrophysiology|electrophysiological]] abnormalities, including [[bradycardia]], variable [[heart rate]], long [[QT interval]]s, [[catecholaminergic polymorphic ventricular tachycardia]], [[syncope (medicine)|syncope]], and [[sudden cardiac death]].<ref>{{cite journal|last1=Mohler|first1=PJ|last2=Schott|first2=JJ|last3=Gramolini|first3=AO|last4=Dilly|first4=KW|last5=Guatimosim|first5=S|last6=duBell|first6=WH|last7=Song|first7=LS|last8=Haurogné|first8=K|last9=Kyndt|first9=F|last10=Ali|first10=ME|last11=Rogers|first11=TB|last12=Lederer|first12=WJ|last13=Escande|first13=D|last14=Le Marec|first14=H|last15=Bennett|first15=V|title=Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death.|journal=Nature|date=6 February 2003|volume=421|issue=6923|pages=634–9|pmid=12571597|doi=10.1038/nature01335|bibcode=2003Natur.421..634M}}</ref> Mechanistic explanations underlying these effects were explained in a later study conducted in the ankyrin-B (-/+) mice, which showed that reduction of ankyrin-B alters the transport of [[sodium]] and [[calcium]] and enhances the coupled openings of [[RYR2|ryanodine receptors]], which results in a higher frequency of [[calcium spark]]s and waves of [[calcium]].<ref>{{cite journal|last1=Camors|first1=E|last2=Mohler|first2=PJ|last3=Bers|first3=DM|last4=Despa|first4=S|title=Ankyrin-B reduction enhances Ca spark-mediated SR Ca release promoting cardiac myocyte arrhythmic activity.|journal=Journal of Molecular and Cellular Cardiology|date=June 2012|volume=52|issue=6|pages=1240–8|pmid=22406428|doi=10.1016/j.yjmcc.2012.02.010|pmc=3348355}}</ref>


It is now becoming clear that ankyrin-B exists in a [[biomolecular complex]] with the [[sodium potassium ATPase]], [[sodium calcium exchanger]] and [[inositol triphosphate receptor]] which is localized in [[T-tubule]]s within discrete microdomains of [[cardiomyocytes]] that are distinct from dyads formed by [[dihydropyridine receptor]]s complexed to [[ryanodine receptor]]s. The human ankyrin-B [[Heart arrhythmia|arrhythmogenic]] mutation ([[Glutamate|Glu]]1425[[Glycine|Gly]]) blocks the formation of this complex, which provides a mechanism behind cardiac [[Heart arrhythmia|arrhythmia]]s in patients.<ref name="ReferenceC"/> Studies from other labs have shed light on the requirement of ankyrin-B in the targeting and post-translational stability of the [[sodium calcium exchanger]] in [[cardiomyocytes]], which is clinically important because elevated expression of the [[sodium calcium exchanger]] is a factor related to [[Heart arrhythmia|arrhythmia]] and [[heart failure]].<ref>{{cite journal|last1=Cunha|first1=SR|last2=Bhasin|first2=N|last3=Mohler|first3=PJ|title=Targeting and stability of Na/Ca exchanger 1 in cardiomyocytes requires direct interaction with the membrane adaptor ankyrin-B.|journal=The Journal of Biological Chemistry|date=16 February 2007|volume=282|issue=7|pages=4875–83|pmid=17178715|doi=10.1074/jbc.m607096200}}</ref> Ankyrin-B forms a membrane complex with [[ATP-sensitive potassium channel]]s, which is necessary for normal channel trafficking and targeting the channel to [[sarcolemma]]l membranes; this interaction is also important in the response of [[cardiomyocytes]] to [[cardiac ischemia]] and metabolic regulation.<ref>{{cite journal|last1=Kline|first1=CF|last2=Kurata|first2=HT|last3=Hund|first3=TJ|last4=Cunha|first4=SR|last5=Koval|first5=OM|last6=Wright|first6=PJ|last7=Christensen|first7=M|last8=Anderson|first8=ME|last9=Nichols|first9=CG|last10=Mohler|first10=PJ|title=Dual role of K ATP channel C-terminal motif in membrane targeting and metabolic regulation.|journal=Proceedings of the National Academy of Sciences of the United States of America|date=29 September 2009|volume=106|issue=39|pages=16669–74|pmid=19805355|doi=10.1073/pnas.0907138106|pmc=2757796}}</ref><ref>{{cite journal|last1=Li|first1=J|last2=Kline|first2=CF|last3=Hund|first3=TJ|last4=Anderson|first4=ME|last5=Mohler|first5=PJ|title=Ankyrin-B regulates Kir6.2 membrane expression and function in heart.|journal=The Journal of Biological Chemistry|date=10 September 2010|volume=285|issue=37|pages=28723–30|pmid=20610380|doi=10.1074/jbc.m110.147868|pmc=2937900}}</ref>
It is now becoming clear that ankyrin-B exists in a [[biomolecular complex]] with the [[sodium potassium ATPase]], [[sodium calcium exchanger]] and [[inositol triphosphate receptor]] which is localized in [[T-tubule]]s within discrete microdomains of [[cardiomyocytes]] that are distinct from dyads formed by [[dihydropyridine receptor]]s complexed to [[ryanodine receptor]]s. The human ankyrin-B [[Heart arrhythmia|arrhythmogenic]] mutation ([[Glutamate|Glu]]1425[[Glycine|Gly]]) blocks the formation of this complex, which provides a mechanism behind cardiac [[Heart arrhythmia|arrhythmia]]s in patients.<ref name="ReferenceC"/> Studies from other labs have shed light on the requirement of ankyrin-B in the targeting and post-translational stability of the [[sodium calcium exchanger]] in [[cardiomyocytes]], which is clinically important because elevated expression of the [[sodium calcium exchanger]] is a factor related to [[Heart arrhythmia|arrhythmia]] and [[heart failure]].<ref>{{cite journal|last1=Cunha|first1=SR|last2=Bhasin|first2=N|last3=Mohler|first3=PJ|title=Targeting and stability of Na/Ca exchanger 1 in cardiomyocytes requires direct interaction with the membrane adaptor ankyrin-B.|journal=The Journal of Biological Chemistry|date=16 February 2007|volume=282|issue=7|pages=4875–83|pmid=17178715|doi=10.1074/jbc.m607096200}}</ref> Ankyrin-B forms a membrane complex with [[ATP-sensitive potassium channel]]s, which is necessary for normal channel trafficking and targeting the channel to [[sarcolemma]]l membranes; this interaction is also important in the response of [[cardiomyocytes]] to [[cardiac ischemia]] and metabolic regulation.<ref>{{cite journal|last1=Kline|first1=CF|last2=Kurata|first2=HT|last3=Hund|first3=TJ|last4=Cunha|first4=SR|last5=Koval|first5=OM|last6=Wright|first6=PJ|last7=Christensen|first7=M|last8=Anderson|first8=ME|last9=Nichols|first9=CG|last10=Mohler|first10=PJ|title=Dual role of K ATP channel C-terminal motif in membrane targeting and metabolic regulation.|journal=Proceedings of the National Academy of Sciences of the United States of America|date=29 September 2009|volume=106|issue=39|pages=16669–74|pmid=19805355|doi=10.1073/pnas.0907138106|pmc=2757796|bibcode=2009PNAS..10616669K}}</ref><ref>{{cite journal|last1=Li|first1=J|last2=Kline|first2=CF|last3=Hund|first3=TJ|last4=Anderson|first4=ME|last5=Mohler|first5=PJ|title=Ankyrin-B regulates Kir6.2 membrane expression and function in heart.|journal=The Journal of Biological Chemistry|date=10 September 2010|volume=285|issue=37|pages=28723–30|pmid=20610380|doi=10.1074/jbc.m110.147868|pmc=2937900}}</ref>


Ankyrin-B has also been identified to associate at [[sarcomere|sarcomeric]] [[sarcomere|M-lines]] and [[costamere]]s in [[cardiac muscle]] and [[skeletal muscle]], respectively. Exon 43′ in ankyrin-B is specifically and predominantly expressed in [[cardiac muscle]] and harbors key residues for modulating the [[protein-protein interaction|interaction]] between ankyrin-B and [[OBSCN|obscurin]]. This [[protein-protein interaction|interaction]] is also key for targeting [[protein phosphatase 2A]] to cardiac [[sarcomere|M-lines]] to propagate [[phosphorylation]] signaling paradigms.<ref name="ReferenceE">{{cite journal|last1=Cunha|first1=SR|last2=Mohler|first2=PJ|title=Obscurin targets ankyrin-B and protein phosphatase 2A to the cardiac M-line.|journal=The Journal of Biological Chemistry|date=14 November 2008|volume=283|issue=46|pages=31968–80|pmid=18782775|doi=10.1074/jbc.m806050200|pmc=2581558}}</ref> In [[skeletal muscle]], ankyrin-B [[protein-protein interaction|interacts]] with [[DCTN4|dynactin-4]] and with [[SPTBN2|β2-spectrin]], which is required for proper localization and functioning of the [[dystrophin]] complex and [[costamere]] structures, as well as protection from exercise-induced injury.<ref>{{cite journal|last1=Ayalon|first1=G|last2=Hostettler|first2=JD|last3=Hoffman|first3=J|last4=Kizhatil|first4=K|last5=Davis|first5=JQ|last6=Bennett|first6=V|title=Ankyrin-B interactions with spectrin and dynactin-4 are required for dystrophin-based protection of skeletal muscle from exercise injury.|journal=The Journal of Biological Chemistry|date=4 March 2011|volume=286|issue=9|pages=7370–8|pmid=21186323|doi=10.1074/jbc.m110.187831|pmc=3044993}}</ref>
Ankyrin-B has also been identified to associate at [[sarcomere|sarcomeric]] [[sarcomere|M-lines]] and [[costamere]]s in [[cardiac muscle]] and [[skeletal muscle]], respectively. Exon 43′ in ankyrin-B is specifically and predominantly expressed in [[cardiac muscle]] and harbors key residues for modulating the [[protein-protein interaction|interaction]] between ankyrin-B and [[OBSCN|obscurin]]. This [[protein-protein interaction|interaction]] is also key for targeting [[protein phosphatase 2A]] to cardiac [[sarcomere|M-lines]] to propagate [[phosphorylation]] signaling paradigms.<ref name="ReferenceE">{{cite journal|last1=Cunha|first1=SR|last2=Mohler|first2=PJ|title=Obscurin targets ankyrin-B and protein phosphatase 2A to the cardiac M-line.|journal=The Journal of Biological Chemistry|date=14 November 2008|volume=283|issue=46|pages=31968–80|pmid=18782775|doi=10.1074/jbc.m806050200|pmc=2581558}}</ref> In [[skeletal muscle]], ankyrin-B [[protein-protein interaction|interacts]] with [[DCTN4|dynactin-4]] and with [[SPTBN2|β2-spectrin]], which is required for proper localization and functioning of the [[dystrophin]] complex and [[costamere]] structures, as well as protection from exercise-induced injury.<ref>{{cite journal|last1=Ayalon|first1=G|last2=Hostettler|first2=JD|last3=Hoffman|first3=J|last4=Kizhatil|first4=K|last5=Davis|first5=JQ|last6=Bennett|first6=V|title=Ankyrin-B interactions with spectrin and dynactin-4 are required for dystrophin-based protection of skeletal muscle from exercise injury.|journal=The Journal of Biological Chemistry|date=4 March 2011|volume=286|issue=9|pages=7370–8|pmid=21186323|doi=10.1074/jbc.m110.187831|pmc=3044993}}</ref>


==Clinical Significance==
==Clinical Significance==
Mutations in the ''ANK2'' [[gene]] have been associated with a dominantly-inherited, cardiac [[Heart arrhythmia|arrhythmia]] syndrome known as ''ankyrin-B syndrome'', previously referred to as ''[[long QT syndrome]]'', type 4, which can be described as an atypical [[Heart arrhythmia|arrhythmia]] syndrome with [[bradycardia]], [[atrial fibrillation]], [[conduction block]], [[Heart arrhythmia|arrhythmia]] and risk of [[sudden cardiac death]].<ref>{{cite journal|last1=Hashemi|first1=SM|last2=Hund|first2=TJ|last3=Mohler|first3=PJ|title=Cardiac ankyrins in health and disease.|journal=Journal of Molecular and Cellular Cardiology|date=August 2009|volume=47|issue=2|pages=203–9|pmid=19394342|doi=10.1016/j.yjmcc.2009.04.010|pmc=2745072}}</ref><ref>{{cite journal|last1=Mohler|first1=PJ|title=Ankyrins and human disease: what the electrophysiologist should know.|journal=Journal of Cardiovascular Electrophysiology|date=October 2006|volume=17|issue=10|pages=1153–9|pmid=16800854|doi=10.1111/j.1540-8167.2006.00540.x}}</ref><ref>{{cite journal|last1=Kline|first1=CF|last2=Mohler|first2=PJ|title=Weighing in on molecular anchors: the role of ankyrin polypeptides in human arrhythmia.|journal=[[Expert Review of Cardiovascular Therapy]]|date=July 2006|volume=4|issue=4|pages=477–85|pmid=16918266|doi=10.1586/14779072.4.4.477}}</ref> Intense investigation is currently ongoing regarding linking ''ANK2'' mutations to the range of severity of cardiac phenotypes, and initial evidence suggests that the varying degrees of loss of function of ankyrin-B [[protein]] may explain the effect of any particular mutation.<ref>{{cite journal|last1=Mohler|first1=PJ|last2=Le Scouarnec|first2=S|last3=Denjoy|first3=I|last4=Lowe|first4=JS|last5=Guicheney|first5=P|last6=Caron|first6=L|last7=Driskell|first7=IM|last8=Schott|first8=JJ|last9=Norris|first9=K|last10=Leenhardt|first10=A|last11=Kim|first11=RB|last12=Escande|first12=D|last13=Roden|first13=DM|title=Defining the cellular phenotype of "ankyrin-B syndrome" variants: human ANK2 variants associated with clinical phenotypes display a spectrum of activities in cardiomyocytes.|journal=Circulation|date=30 January 2007|volume=115|issue=4|pages=432–41|pmid=17242276|doi=10.1161/circulationaha.106.656512}}</ref><ref>{{cite journal|last1=Tomaselli|first1=GF|title=A failure to adapt: ankyrins in congenital and acquired arrhythmias.|journal=Circulation|date=30 January 2007|volume=115|issue=4|pages=428–9|pmid=17261669|doi=10.1161/circulationaha.106.675389}}</ref><ref>{{cite journal|last1=Mohler|first1=PJ|last2=Healy|first2=JA|last3=Xue|first3=H|last4=Puca|first4=AA|last5=Kline|first5=CF|last6=Allingham|first6=RR|last7=Kranias|first7=EG|last8=Rockman|first8=HA|last9=Bennett|first9=V|title=Ankyrin-B syndrome: enhanced cardiac function balanced by risk of cardiac death and premature senescence.|journal=PLOS ONE|date=17 October 2007|volume=2|issue=10|pages=e1051|pmid=17940615|doi=10.1371/journal.pone.0001051|pmc=2013943}}</ref><ref>{{cite journal|last1=Bush|first1=WS|last2=Crawford|first2=DC|last3=Alexander|first3=C|last4=George AL|first4=Jr|last5=Roden|first5=DM|last6=Ritchie|first6=MD|title=Genetic variation in the rhythmonome: ethnic variation and haplotype structure in candidate genes for arrhythmias.|journal=Pharmacogenomics|date=June 2009|volume=10|issue=6|pages=1043–53|pmid=19530973|doi=10.2217/pgs.09.67|pmc=2746955}}</ref><ref>{{cite journal|last1=Sedlacek|first1=K|last2=Stark|first2=K|last3=Cunha|first3=SR|last4=Pfeufer|first4=A|last5=Weber|first5=S|last6=Berger|first6=I|last7=Perz|first7=S|last8=Kääb|first8=S|last9=Wichmann|first9=HE|last10=Mohler|first10=PJ|last11=Hengstenberg|first11=C|last12=Jeron|first12=A|title=Common genetic variants in ANK2 modulate QT interval: results from the KORA study.|journal=Circulation: Cardiovascular Genetics|date=December 2008|volume=1|issue=2|pages=93–9|pmid=20031550|doi=10.1161/circgenetics.108.792192}}</ref><ref>{{cite journal|last1=Alders|first1=M|last2=Christiaans|first2=I|last3=Pagon|first3=RA|last4=Adam|first4=MP|last5=Ardinger|first5=HH|last6=Wallace|first6=SE|last7=Amemiya|first7=A|last8=Bean|first8=LJH|last9=Bird|first9=TD|last10=Fong|first10=CT|last11=Smith|first11=RJH|last12=Stephens|first12=K|title=Long QT Syndrome|date=1993|pmid=20301308}}</ref><ref>{{cite journal|last1=Wolf|first1=RM|last2=Mitchell|first2=CC|last3=Christensen|first3=MD|last4=Mohler|first4=PJ|last5=Hund|first5=TJ|title=Defining new insight into atypical arrhythmia: a computational model of ankyrin-B syndrome.|journal=American Journal of Physiology. Heart and Circulatory Physiology|date=November 2010|volume=299|issue=5|pages=H1505–14|pmid=20729400|doi=10.1152/ajpheart.00503.2010|pmc=2993217}}</ref><ref>{{cite journal|last1=Zhang|first1=T|last2=Moss|first2=A|last3=Cong|first3=P|last4=Pan|first4=M|last5=Chang|first5=B|last6=Zheng|first6=L|last7=Fang|first7=Q|last8=Zareba|first8=W|last9=Robinson|first9=J|last10=Lin|first10=C|last11=Li|first11=Z|last12=Wei|first12=J|last13=Zeng|first13=Q|last14=Long QT International Registry|first14=Investigators|last15=HVP-China|first15=Investigators|last16=Qi|first16=M|title=LQTS gene LOVD database.|journal=Human Mutation|date=November 2010|volume=31|issue=11|pages=E1801–10|pmid=20809527|doi=10.1002/humu.21341|pmc=3037562}}</ref><ref>{{cite journal|last1=Wolf|first1=RM|last2=Glynn|first2=P|last3=Hashemi|first3=S|last4=Zarei|first4=K|last5=Mitchell|first5=CC|last6=Anderson|first6=ME|last7=Mohler|first7=PJ|last8=Hund|first8=TJ|title=Atrial fibrillation and sinus node dysfunction in human ankyrin-B syndrome: a computational analysis.|journal=American Journal of Physiology. Heart and Circulatory Physiology|date=May 2013|volume=304|issue=9|pages=H1253–66|pmid=23436330|doi=10.1152/ajpheart.00734.2012|pmc=3652094}}</ref><ref>{{cite journal|last1=Robaei|first1=D|last2=Ford|first2=T|last3=Ooi|first3=SY|title=Ankyrin-B syndrome: a case of sinus node dysfunction, atrial fibrillation and prolonged QT in a young adult.|journal=Heart, Lung & Circulation|date=February 2015|volume=24|issue=2|pages=e31–4|pmid=25456501|doi=10.1016/j.hlc.2014.09.013}}</ref>
Mutations in the ''ANK2'' [[gene]] have been associated with a dominantly-inherited, cardiac [[Heart arrhythmia|arrhythmia]] syndrome known as ''ankyrin-B syndrome'', previously referred to as ''[[long QT syndrome]]'', type 4, which can be described as an atypical [[Heart arrhythmia|arrhythmia]] syndrome with [[bradycardia]], [[atrial fibrillation]], [[conduction block]], [[Heart arrhythmia|arrhythmia]] and risk of [[sudden cardiac death]].<ref>{{cite journal|last1=Hashemi|first1=SM|last2=Hund|first2=TJ|last3=Mohler|first3=PJ|title=Cardiac ankyrins in health and disease.|journal=Journal of Molecular and Cellular Cardiology|date=August 2009|volume=47|issue=2|pages=203–9|pmid=19394342|doi=10.1016/j.yjmcc.2009.04.010|pmc=2745072}}</ref><ref>{{cite journal|last1=Mohler|first1=PJ|title=Ankyrins and human disease: what the electrophysiologist should know.|journal=Journal of Cardiovascular Electrophysiology|date=October 2006|volume=17|issue=10|pages=1153–9|pmid=16800854|doi=10.1111/j.1540-8167.2006.00540.x}}</ref><ref>{{cite journal|last1=Kline|first1=CF|last2=Mohler|first2=PJ|title=Weighing in on molecular anchors: the role of ankyrin polypeptides in human arrhythmia.|journal=[[Expert Review of Cardiovascular Therapy]]|date=July 2006|volume=4|issue=4|pages=477–85|pmid=16918266|doi=10.1586/14779072.4.4.477}}</ref> Intense investigation is currently ongoing regarding linking ''ANK2'' mutations to the range of severity of cardiac phenotypes, and initial evidence suggests that the varying degrees of loss of function of ankyrin-B [[protein]] may explain the effect of any particular mutation.<ref>{{cite journal|last1=Mohler|first1=PJ|last2=Le Scouarnec|first2=S|last3=Denjoy|first3=I|last4=Lowe|first4=JS|last5=Guicheney|first5=P|last6=Caron|first6=L|last7=Driskell|first7=IM|last8=Schott|first8=JJ|last9=Norris|first9=K|last10=Leenhardt|first10=A|last11=Kim|first11=RB|last12=Escande|first12=D|last13=Roden|first13=DM|title=Defining the cellular phenotype of "ankyrin-B syndrome" variants: human ANK2 variants associated with clinical phenotypes display a spectrum of activities in cardiomyocytes.|journal=Circulation|date=30 January 2007|volume=115|issue=4|pages=432–41|pmid=17242276|doi=10.1161/circulationaha.106.656512}}</ref><ref>{{cite journal|last1=Tomaselli|first1=GF|title=A failure to adapt: ankyrins in congenital and acquired arrhythmias.|journal=Circulation|date=30 January 2007|volume=115|issue=4|pages=428–9|pmid=17261669|doi=10.1161/circulationaha.106.675389}}</ref><ref>{{cite journal|last1=Mohler|first1=PJ|last2=Healy|first2=JA|last3=Xue|first3=H|last4=Puca|first4=AA|last5=Kline|first5=CF|last6=Allingham|first6=RR|last7=Kranias|first7=EG|last8=Rockman|first8=HA|last9=Bennett|first9=V|title=Ankyrin-B syndrome: enhanced cardiac function balanced by risk of cardiac death and premature senescence.|journal=PLOS One|date=17 October 2007|volume=2|issue=10|pages=e1051|pmid=17940615|doi=10.1371/journal.pone.0001051|pmc=2013943|bibcode=2007PLoSO...2.1051M}}</ref><ref>{{cite journal|last1=Bush|first1=WS|last2=Crawford|first2=DC|last3=Alexander|first3=C|last4=George AL|first4=Jr|last5=Roden|first5=DM|last6=Ritchie|first6=MD|title=Genetic variation in the rhythmonome: ethnic variation and haplotype structure in candidate genes for arrhythmias.|journal=Pharmacogenomics|date=June 2009|volume=10|issue=6|pages=1043–53|pmid=19530973|doi=10.2217/pgs.09.67|pmc=2746955}}</ref><ref>{{cite journal|last1=Sedlacek|first1=K|last2=Stark|first2=K|last3=Cunha|first3=SR|last4=Pfeufer|first4=A|last5=Weber|first5=S|last6=Berger|first6=I|last7=Perz|first7=S|last8=Kääb|first8=S|last9=Wichmann|first9=HE|last10=Mohler|first10=PJ|last11=Hengstenberg|first11=C|last12=Jeron|first12=A|title=Common genetic variants in ANK2 modulate QT interval: results from the KORA study.|journal=Circulation: Cardiovascular Genetics|date=December 2008|volume=1|issue=2|pages=93–9|pmid=20031550|doi=10.1161/circgenetics.108.792192}}</ref><ref>{{cite journal|last1=Alders|first1=M|last2=Christiaans|first2=I|last3=Pagon|first3=RA|last4=Adam|first4=MP|last5=Ardinger|first5=HH|last6=Wallace|first6=SE|last7=Amemiya|first7=A|last8=Bean|first8=LJH|last9=Bird|first9=TD|last10=Fong|first10=CT|last11=Smith|first11=RJH|last12=Stephens|first12=K|title=Long QT Syndrome|date=1993|pmid=20301308}}</ref><ref>{{cite journal|last1=Wolf|first1=RM|last2=Mitchell|first2=CC|last3=Christensen|first3=MD|last4=Mohler|first4=PJ|last5=Hund|first5=TJ|title=Defining new insight into atypical arrhythmia: a computational model of ankyrin-B syndrome.|journal=American Journal of Physiology. Heart and Circulatory Physiology|date=November 2010|volume=299|issue=5|pages=H1505–14|pmid=20729400|doi=10.1152/ajpheart.00503.2010|pmc=2993217}}</ref><ref>{{cite journal|last1=Zhang|first1=T|last2=Moss|first2=A|last3=Cong|first3=P|last4=Pan|first4=M|last5=Chang|first5=B|last6=Zheng|first6=L|last7=Fang|first7=Q|last8=Zareba|first8=W|last9=Robinson|first9=J|last10=Lin|first10=C|last11=Li|first11=Z|last12=Wei|first12=J|last13=Zeng|first13=Q|last14=Long QT International Registry|first14=Investigators|last15=HVP-China|first15=Investigators|last16=Qi|first16=M|title=LQTS gene LOVD database.|journal=Human Mutation|date=November 2010|volume=31|issue=11|pages=E1801–10|pmid=20809527|doi=10.1002/humu.21341|pmc=3037562}}</ref><ref>{{cite journal|last1=Wolf|first1=RM|last2=Glynn|first2=P|last3=Hashemi|first3=S|last4=Zarei|first4=K|last5=Mitchell|first5=CC|last6=Anderson|first6=ME|last7=Mohler|first7=PJ|last8=Hund|first8=TJ|title=Atrial fibrillation and sinus node dysfunction in human ankyrin-B syndrome: a computational analysis.|journal=American Journal of Physiology. Heart and Circulatory Physiology|date=May 2013|volume=304|issue=9|pages=H1253–66|pmid=23436330|doi=10.1152/ajpheart.00734.2012|pmc=3652094|bibcode=2013BpJ...104S.287W}}</ref><ref>{{cite journal|last1=Robaei|first1=D|last2=Ford|first2=T|last3=Ooi|first3=SY|title=Ankyrin-B syndrome: a case of sinus node dysfunction, atrial fibrillation and prolonged QT in a young adult.|journal=Heart, Lung & Circulation|date=February 2015|volume=24|issue=2|pages=e31–4|pmid=25456501|doi=10.1016/j.hlc.2014.09.013}}</ref>


Initially, a [[Glutamate|Glu]]1425[[Glycine|Gly]] mutation in ''ANK2'' was found to cause dominantly-inherited [[long QT syndrome]], type 4, cardiac [[Heart arrhythmia|arrhythmia]]. The mechanistic underpinnings of this mutation include abnormal expression and targeting of the sodium pump, the [[sodium-calcium exchanger]], and [[inositol trisphosphate receptor|inositol-1,4,5-trisphosphate receptors]] to [[transverse tubules]], as well as [[calcium]] handling resulting in [[Premature ventricular contraction|extrasystoles]].<ref name="pmid12571597">{{cite journal |vauthors=Mohler PJ, Schott JJ, Gramolini AO, Dilly KW, Guatimosim S, duBell WH, Song LS, Haurogné K, Kyndt F, Ali ME, Rogers TB, Lederer WJ, Escande D, Le Marec H, Bennett V | title = Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death | journal = Nature | volume = 421 | issue = 6923 | pages = 634–9 |date=February 2003 | pmid = 12571597 | doi = 10.1038/nature01335 | url = }}</ref> Further analysis in ''ANK2'' mutations localized in the regulatory domain of ankyrin-2, which is specific to the ankyrin-2 isoform, indicated that [[long QT syndrome]] was not a consistent clinical manifestation of ''ANK2'' mutations;<ref>{{cite journal|last1=Sherman|first1=J|last2=Tester|first2=DJ|last3=Ackerman|first3=MJ|title=Targeted mutational analysis of ankyrin-B in 541 consecutive, unrelated patients referred for long QT syndrome genetic testing and 200 healthy subjects.|journal=Heart Rhythm|date=November 2005|volume=2|issue=11|pages=1218–23|pmid=16253912|doi=10.1016/j.hrthm.2005.07.026}}</ref> however, the effect on Ca(2+) dynamics and localization/expression of the [[sodium calcium exchanger]], [[sodium potassium ATPase]] and [[inositol triphosphate receptor]] in [[cardiomyocytes]] were consistent observations. This study demonstrated that common pathogenic features of all ''ANK2'' mutations was the abnormal coordination of a panel of related [[ion channel]]s and transporters.<ref>{{cite journal|last1=Mohler|first1=PJ|last2=Splawski|first2=I|last3=Napolitano|first3=C|last4=Bottelli|first4=G|last5=Sharpe|first5=L|last6=Timothy|first6=K|last7=Priori|first7=SG|last8=Keating|first8=MT|last9=Bennett|first9=V|title=A cardiac arrhythmia syndrome caused by loss of ankyrin-B function.|journal=Proceedings of the National Academy of Sciences of the United States of America|date=15 June 2004|volume=101|issue=24|pages=9137–42|pmid=15178757|doi=10.1073/pnas.0402546101|pmc=428486}}</ref> Additional mechanistic studies have shown that atrial [[cardiomyocyte]]s lacking ankyrin-B have shortened [[action potential]]s, which can be explained by decreased [[voltage-dependent calcium channel]] expression, specifically Ca(v)1.3, which is responsible for low voltage-activated L-type Ca(2+) currents. Ankyrin-B directly associates with and is required for targeting Ca(v)1.3 to membranes.<ref>{{cite journal|last1=Cunha|first1=SR|last2=Hund|first2=TJ|last3=Hashemi|first3=S|last4=Voigt|first4=N|last5=Li|first5=N|last6=Wright|first6=P|last7=Koval|first7=O|last8=Li|first8=J|last9=Gudmundsson|first9=H|last10=Gumina|first10=RJ|last11=Karck|first11=M|last12=Schott|first12=JJ|last13=Probst|first13=V|last14=Le Marec|first14=H|last15=Anderson|first15=ME|last16=Dobrev|first16=D|last17=Wehrens|first17=XH|last18=Mohler|first18=PJ|title=Defects in ankyrin-based membrane protein targeting pathways underlie atrial fibrillation.|journal=Circulation|date=13 September 2011|volume=124|issue=11|pages=1212–22|pmid=21859974|doi=10.1161/circulationaha.111.023986|pmc=3211046}}</ref>
Initially, a [[Glutamate|Glu]]1425[[Glycine|Gly]] mutation in ''ANK2'' was found to cause dominantly-inherited [[long QT syndrome]], type 4, cardiac [[Heart arrhythmia|arrhythmia]]. The mechanistic underpinnings of this mutation include abnormal expression and targeting of the sodium pump, the [[sodium-calcium exchanger]], and [[inositol trisphosphate receptor|inositol-1,4,5-trisphosphate receptors]] to [[transverse tubules]], as well as [[calcium]] handling resulting in [[Premature ventricular contraction|extrasystoles]].<ref name="pmid12571597">{{cite journal |vauthors=Mohler PJ, Schott JJ, Gramolini AO, Dilly KW, Guatimosim S, duBell WH, Song LS, Haurogné K, Kyndt F, Ali ME, Rogers TB, Lederer WJ, Escande D, Le Marec H, Bennett V | title = Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death | journal = Nature | volume = 421 | issue = 6923 | pages = 634–9 |date=February 2003 | pmid = 12571597 | doi = 10.1038/nature01335 | bibcode = 2003Natur.421..634M | url = }}</ref> Further analysis in ''ANK2'' mutations localized in the regulatory domain of ankyrin-2, which is specific to the ankyrin-2 isoform, indicated that [[long QT syndrome]] was not a consistent clinical manifestation of ''ANK2'' mutations;<ref>{{cite journal|last1=Sherman|first1=J|last2=Tester|first2=DJ|last3=Ackerman|first3=MJ|title=Targeted mutational analysis of ankyrin-B in 541 consecutive, unrelated patients referred for long QT syndrome genetic testing and 200 healthy subjects.|journal=Heart Rhythm|date=November 2005|volume=2|issue=11|pages=1218–23|pmid=16253912|doi=10.1016/j.hrthm.2005.07.026}}</ref> however, the effect on Ca(2+) dynamics and localization/expression of the [[sodium calcium exchanger]], [[sodium potassium ATPase]] and [[inositol triphosphate receptor]] in [[cardiomyocytes]] were consistent observations. This study demonstrated that common pathogenic features of all ''ANK2'' mutations was the abnormal coordination of a panel of related [[ion channel]]s and transporters.<ref>{{cite journal|last1=Mohler|first1=PJ|last2=Splawski|first2=I|last3=Napolitano|first3=C|last4=Bottelli|first4=G|last5=Sharpe|first5=L|last6=Timothy|first6=K|last7=Priori|first7=SG|last8=Keating|first8=MT|last9=Bennett|first9=V|title=A cardiac arrhythmia syndrome caused by loss of ankyrin-B function.|journal=Proceedings of the National Academy of Sciences of the United States of America|date=15 June 2004|volume=101|issue=24|pages=9137–42|pmid=15178757|doi=10.1073/pnas.0402546101|pmc=428486|bibcode=2004PNAS..101.9137M}}</ref> Additional mechanistic studies have shown that atrial [[cardiomyocyte]]s lacking ankyrin-B have shortened [[action potential]]s, which can be explained by decreased [[voltage-dependent calcium channel]] expression, specifically Ca(v)1.3, which is responsible for low voltage-activated L-type Ca(2+) currents. Ankyrin-B directly associates with and is required for targeting Ca(v)1.3 to membranes.<ref>{{cite journal|last1=Cunha|first1=SR|last2=Hund|first2=TJ|last3=Hashemi|first3=S|last4=Voigt|first4=N|last5=Li|first5=N|last6=Wright|first6=P|last7=Koval|first7=O|last8=Li|first8=J|last9=Gudmundsson|first9=H|last10=Gumina|first10=RJ|last11=Karck|first11=M|last12=Schott|first12=JJ|last13=Probst|first13=V|last14=Le Marec|first14=H|last15=Anderson|first15=ME|last16=Dobrev|first16=D|last17=Wehrens|first17=XH|last18=Mohler|first18=PJ|title=Defects in ankyrin-based membrane protein targeting pathways underlie atrial fibrillation.|journal=Circulation|date=13 September 2011|volume=124|issue=11|pages=1212–22|pmid=21859974|doi=10.1161/circulationaha.111.023986|pmc=3211046}}</ref>


''ANK2'' mutations have also been identified in patients with [[Sick sinus syndrome|sinus node dysfunction]]. Mechanistic studies on effects of these mutations in mice showed severe [[bradycardia]] and variability in [[heart rate]], as well as dysfunction in ankyrin-B-based trafficking pathways in primary and subsidiary pacemaker cells.<ref>{{cite journal|last1=Le Scouarnec|first1=S|last2=Bhasin|first2=N|last3=Vieyres|first3=C|last4=Hund|first4=TJ|last5=Cunha|first5=SR|last6=Koval|first6=O|last7=Marionneau|first7=C|last8=Chen|first8=B|last9=Wu|first9=Y|last10=Demolombe|first10=S|last11=Song|first11=LS|last12=Le Marec|first12=H|last13=Probst|first13=V|last14=Schott|first14=JJ|last15=Anderson|first15=ME|last16=Mohler|first16=PJ|title=Dysfunction in ankyrin-B-dependent ion channel and transporter targeting causes human sinus node disease.|journal=Proceedings of the National Academy of Sciences of the United States of America|date=7 October 2008|volume=105|issue=40|pages=15617–22|pmid=18832177|doi=10.1073/pnas.0805500105|pmc=2563133}}</ref><ref>{{cite journal|last1=Hund|first1=TJ|last2=Mohler|first2=PJ|title=Ankyrin-based targeting pathway regulates human sinoatrial node automaticity.|journal=Channels (Austin, Tex.)|volume=2|issue=6|pages=404–6|pmid=19098452|doi=10.4161/chan.2.6.7220|year=2008}}</ref><ref>{{cite journal|last1=Glukhov|first1=AV|last2=Fedorov|first2=VV|last3=Anderson|first3=ME|last4=Mohler|first4=PJ|last5=Efimov|first5=IR|title=Functional anatomy of the murine sinus node: high-resolution optical mapping of ankyrin-B heterozygous mice.|journal=American Journal of Physiology. Heart and Circulatory Physiology|date=August 2010|volume=299|issue=2|pages=H482–91|pmid=20525877|doi=10.1152/ajpheart.00756.2009|pmc=2930390}}</ref> In a large genotype-phenotype study of 874 patients with [[hypertrophic cardiomyopathy]], patients with ''ANK2'' variants exhibited greater maximum left [[ventricle (heart)|ventricular]] wall thickness.<ref>{{cite journal|last1=Lopes|first1=LR|last2=Syrris|first2=P|last3=Guttmann|first3=OP|last4=O'Mahony|first4=C|last5=Tang|first5=HC|last6=Dalageorgou|first6=C|last7=Jenkins|first7=S|last8=Hubank|first8=M|last9=Monserrat|first9=L|last10=McKenna|first10=WJ|last11=Plagnol|first11=V|last12=Elliott|first12=PM|title=Novel genotype-phenotype associations demonstrated by high-throughput sequencing in patients with hypertrophic cardiomyopathy.|journal=Heart|date=February 2015|volume=101|issue=4|pages=294–301|pmid=25351510|doi=10.1136/heartjnl-2014-306387|pmc=4345808}}</ref>
''ANK2'' mutations have also been identified in patients with [[Sick sinus syndrome|sinus node dysfunction]]. Mechanistic studies on effects of these mutations in mice showed severe [[bradycardia]] and variability in [[heart rate]], as well as dysfunction in ankyrin-B-based trafficking pathways in primary and subsidiary pacemaker cells.<ref>{{cite journal|last1=Le Scouarnec|first1=S|last2=Bhasin|first2=N|last3=Vieyres|first3=C|last4=Hund|first4=TJ|last5=Cunha|first5=SR|last6=Koval|first6=O|last7=Marionneau|first7=C|last8=Chen|first8=B|last9=Wu|first9=Y|last10=Demolombe|first10=S|last11=Song|first11=LS|last12=Le Marec|first12=H|last13=Probst|first13=V|last14=Schott|first14=JJ|last15=Anderson|first15=ME|last16=Mohler|first16=PJ|title=Dysfunction in ankyrin-B-dependent ion channel and transporter targeting causes human sinus node disease.|journal=Proceedings of the National Academy of Sciences of the United States of America|date=7 October 2008|volume=105|issue=40|pages=15617–22|pmid=18832177|doi=10.1073/pnas.0805500105|pmc=2563133|bibcode=2008PNAS..10515617L}}</ref><ref>{{cite journal|last1=Hund|first1=TJ|last2=Mohler|first2=PJ|title=Ankyrin-based targeting pathway regulates human sinoatrial node automaticity.|journal=Channels (Austin, Tex.)|volume=2|issue=6|pages=404–6|pmid=19098452|doi=10.4161/chan.2.6.7220|year=2008}}</ref><ref>{{cite journal|last1=Glukhov|first1=AV|last2=Fedorov|first2=VV|last3=Anderson|first3=ME|last4=Mohler|first4=PJ|last5=Efimov|first5=IR|title=Functional anatomy of the murine sinus node: high-resolution optical mapping of ankyrin-B heterozygous mice.|journal=American Journal of Physiology. Heart and Circulatory Physiology|date=August 2010|volume=299|issue=2|pages=H482–91|pmid=20525877|doi=10.1152/ajpheart.00756.2009|pmc=2930390}}</ref> In a large genotype-phenotype study of 874 patients with [[hypertrophic cardiomyopathy]], patients with ''ANK2'' variants exhibited greater maximum left [[ventricle (heart)|ventricular]] wall thickness.<ref>{{cite journal|last1=Lopes|first1=LR|last2=Syrris|first2=P|last3=Guttmann|first3=OP|last4=O'Mahony|first4=C|last5=Tang|first5=HC|last6=Dalageorgou|first6=C|last7=Jenkins|first7=S|last8=Hubank|first8=M|last9=Monserrat|first9=L|last10=McKenna|first10=WJ|last11=Plagnol|first11=V|last12=Elliott|first12=PM|title=Novel genotype-phenotype associations demonstrated by high-throughput sequencing in patients with hypertrophic cardiomyopathy.|journal=Heart|date=February 2015|volume=101|issue=4|pages=294–301|pmid=25351510|doi=10.1136/heartjnl-2014-306387|pmc=4345808}}</ref>


In patients with both [[ischemic heart disease|ischemic]] and non-ischemic heart failure, ankyrin-B levels are altered. Further mechanistic study showed that [[reactive oxygen species]], intracellular [[calcium]] and [[calpain]] regulate cardiac ankyrin-B levels, and ankyrin-B is required for normal cardioprotection following [[Reperfusion injury|ischemia reperfusion injury]].<ref>{{cite journal|last1=Kashef|first1=F|last2=Li|first2=J|last3=Wright|first3=P|last4=Snyder|first4=J|last5=Suliman|first5=F|last6=Kilic|first6=A|last7=Higgins|first7=RS|last8=Anderson|first8=ME|last9=Binkley|first9=PF|last10=Hund|first10=TJ|last11=Mohler|first11=PJ|title=Ankyrin-B protein in heart failure: identification of a new component of metazoan cardioprotection.|journal=The Journal of Biological Chemistry|date=31 August 2012|volume=287|issue=36|pages=30268–81|pmid=22778271|doi=10.1074/jbc.m112.368415|pmc=3436279}}</ref>
In patients with both [[ischemic heart disease|ischemic]] and non-ischemic heart failure, ankyrin-B levels are altered. Further mechanistic study showed that [[reactive oxygen species]], intracellular [[calcium]] and [[calpain]] regulate cardiac ankyrin-B levels, and ankyrin-B is required for normal cardioprotection following [[Reperfusion injury|ischemia reperfusion injury]].<ref>{{cite journal|last1=Kashef|first1=F|last2=Li|first2=J|last3=Wright|first3=P|last4=Snyder|first4=J|last5=Suliman|first5=F|last6=Kilic|first6=A|last7=Higgins|first7=RS|last8=Anderson|first8=ME|last9=Binkley|first9=PF|last10=Hund|first10=TJ|last11=Mohler|first11=PJ|title=Ankyrin-B protein in heart failure: identification of a new component of metazoan cardioprotection.|journal=The Journal of Biological Chemistry|date=31 August 2012|volume=287|issue=36|pages=30268–81|pmid=22778271|doi=10.1074/jbc.m112.368415|pmc=3436279}}</ref>

Revision as of 21:20, 19 March 2020

ANK2
Available structures
PDBHuman UniProt search: PDBe RCSB
Identifiers
AliasesANK2, ANK-2, LQT4, brank-2, ankyrin 2, neuronal, ankyrin 2
External IDsOMIM: 106410 HomoloGene: 81655 GeneCards: ANK2
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001127493
NM_001148
NM_020977

n/a

RefSeq (protein)

n/a

Location (UCSC)n/an/a
PubMed search[1]n/a
Wikidata
View/Edit Human

Ankyrin-B, also known as Ankyrin-2, is a protein which in humans is encoded by the ANK2 gene.[2][3] Ankyrin-B is ubiquitously expressed, but shows high expression in cardiac muscle. Ankyrin-B plays an essential role in the localization and membrane stabilization of ion transporters and ion channels in cardiomyocytes, as well as in costamere structures. Mutations in ankyrin-B cause a dominantly-inherited, cardiac arrhythmia syndrome known as ankyrin-B syndrome as well as sick sinus syndrome; mutations have also been associated to a lesser degree with hypertrophic cardiomyopathy. Alterations in ankyrin-B expression levels are observed in human heart failure.

Structure

Ankyrin-B protein is around 220 kDa, with several isoforms.[4] The ANK2 gene is approximately 560 kb in size and consists of 53 exons on human chromosome 4; ANK2 is also transcriptionally regulated via over 30 alternative splicing events with variable expression of isoforms in cardiac muscle.[5][6][7] Ankyrin-B is a member of the ankyrin family of proteins, and is a modular protein which is composed of three structural domains: an N-terminal domain containing multiple ankyrin repeats; a central region with a highly conserved spectrin binding domain and death domain; and a C-terminal regulatory domain which is the least conserved and subject to variation, and determines ankyrin-B activity.[2][8][9] The membrane-binding region of ankyrin-B is composed of 24 consecutive ankyrin repeats, and it is the membrane-binding domain of ankyrins that confer functional differences among ankyrin isoforms.[9] Though ubiquitously expressed, ankyrin-B shows high expression levels in cardiac muscle, and is expressed 10-fold lower levels in skeletal muscle, suggesting that ankyrin-B plays a specifically adapted functional role in cardiac muscle.[10]

Function

Ankyrin-B is a member of the ankyrin family of proteins. ankyrin-1 has shown to be essential in normal function of erythrocytes;[11] however, ankyrin-B and ankyrin-3 play essential roles in the localization and membrane stabilization of ion transporters and ion channels in cardiomyocytes.[10][12]

Functional insights into ankyrin-B function have come from studies employing ankyrin-B chimeric proteins. One study showed that the death/C-terminal domain of ankyrin-B determines both the subcellular localization as well as activity in restoring normal inositol trisphosphate receptor and ryanodine receptor localization and cardiomyocyte contractility.[9] Further studies have shown that the beta-hairpin loops within the ankyrin repeat domain of ankyrin-B are required for the interaction with the inositol trisphosphate receptor, and a reduction of ankyrin-B in neonatal cardiomyocytes reduces the half-life of the inositol trisphosphate receptor by 3-fold and destabilizes its proper localization; all of these effects were rescued by reintroducing ankyrin-B.[13] Moreover, a specific sequence in ankyrin-B (absent in other ankyrin isoforms) folds as an amphipathic alpha helix is required for normal levels of sodium-calcium exchanger, sodium potassium ATPase and inositol triphosphate receptor in cardiomyocytes, and is regulated by HDJ1/HSP40 binding to this region.[14]

Additional insights into ankyrin-B function have come from studies employing ankyrin-B transgenic animals. Cardiomyocytes from ankyrin-B (-/+) mice exhibited irregular spatial patterns and periodicity of calcium release, as well as abnormal distribution of the sarcomplasmic reticular calcium ATPase, SERCA2, and ryanodine receptors; effects that were rescued by transfection of ankyrin-B.[15] Effects on ryanodine receptors specifically were also rescued by a potent Ca2+/calmodulin-dependent protein kinase II inhibitor, suggesting that inhibition of Ca2+/calmodulin-dependent protein kinase II may also be a potential treatment strategy.[16][17] These mice also display several electrophysiological abnormalities, including bradycardia, variable heart rate, long QT intervals, catecholaminergic polymorphic ventricular tachycardia, syncope, and sudden cardiac death.[18] Mechanistic explanations underlying these effects were explained in a later study conducted in the ankyrin-B (-/+) mice, which showed that reduction of ankyrin-B alters the transport of sodium and calcium and enhances the coupled openings of ryanodine receptors, which results in a higher frequency of calcium sparks and waves of calcium.[19]

It is now becoming clear that ankyrin-B exists in a biomolecular complex with the sodium potassium ATPase, sodium calcium exchanger and inositol triphosphate receptor which is localized in T-tubules within discrete microdomains of cardiomyocytes that are distinct from dyads formed by dihydropyridine receptors complexed to ryanodine receptors. The human ankyrin-B arrhythmogenic mutation (Glu1425Gly) blocks the formation of this complex, which provides a mechanism behind cardiac arrhythmias in patients.[10] Studies from other labs have shed light on the requirement of ankyrin-B in the targeting and post-translational stability of the sodium calcium exchanger in cardiomyocytes, which is clinically important because elevated expression of the sodium calcium exchanger is a factor related to arrhythmia and heart failure.[20] Ankyrin-B forms a membrane complex with ATP-sensitive potassium channels, which is necessary for normal channel trafficking and targeting the channel to sarcolemmal membranes; this interaction is also important in the response of cardiomyocytes to cardiac ischemia and metabolic regulation.[21][22]

Ankyrin-B has also been identified to associate at sarcomeric M-lines and costameres in cardiac muscle and skeletal muscle, respectively. Exon 43′ in ankyrin-B is specifically and predominantly expressed in cardiac muscle and harbors key residues for modulating the interaction between ankyrin-B and obscurin. This interaction is also key for targeting protein phosphatase 2A to cardiac M-lines to propagate phosphorylation signaling paradigms.[23] In skeletal muscle, ankyrin-B interacts with dynactin-4 and with β2-spectrin, which is required for proper localization and functioning of the dystrophin complex and costamere structures, as well as protection from exercise-induced injury.[24]

Clinical Significance

Mutations in the ANK2 gene have been associated with a dominantly-inherited, cardiac arrhythmia syndrome known as ankyrin-B syndrome, previously referred to as long QT syndrome, type 4, which can be described as an atypical arrhythmia syndrome with bradycardia, atrial fibrillation, conduction block, arrhythmia and risk of sudden cardiac death.[25][26][27] Intense investigation is currently ongoing regarding linking ANK2 mutations to the range of severity of cardiac phenotypes, and initial evidence suggests that the varying degrees of loss of function of ankyrin-B protein may explain the effect of any particular mutation.[28][29][30][31][32][33][34][35][36][37]

Initially, a Glu1425Gly mutation in ANK2 was found to cause dominantly-inherited long QT syndrome, type 4, cardiac arrhythmia. The mechanistic underpinnings of this mutation include abnormal expression and targeting of the sodium pump, the sodium-calcium exchanger, and inositol-1,4,5-trisphosphate receptors to transverse tubules, as well as calcium handling resulting in extrasystoles.[38] Further analysis in ANK2 mutations localized in the regulatory domain of ankyrin-2, which is specific to the ankyrin-2 isoform, indicated that long QT syndrome was not a consistent clinical manifestation of ANK2 mutations;[39] however, the effect on Ca(2+) dynamics and localization/expression of the sodium calcium exchanger, sodium potassium ATPase and inositol triphosphate receptor in cardiomyocytes were consistent observations. This study demonstrated that common pathogenic features of all ANK2 mutations was the abnormal coordination of a panel of related ion channels and transporters.[40] Additional mechanistic studies have shown that atrial cardiomyocytes lacking ankyrin-B have shortened action potentials, which can be explained by decreased voltage-dependent calcium channel expression, specifically Ca(v)1.3, which is responsible for low voltage-activated L-type Ca(2+) currents. Ankyrin-B directly associates with and is required for targeting Ca(v)1.3 to membranes.[41]

ANK2 mutations have also been identified in patients with sinus node dysfunction. Mechanistic studies on effects of these mutations in mice showed severe bradycardia and variability in heart rate, as well as dysfunction in ankyrin-B-based trafficking pathways in primary and subsidiary pacemaker cells.[42][43][44] In a large genotype-phenotype study of 874 patients with hypertrophic cardiomyopathy, patients with ANK2 variants exhibited greater maximum left ventricular wall thickness.[45]

In patients with both ischemic and non-ischemic heart failure, ankyrin-B levels are altered. Further mechanistic study showed that reactive oxygen species, intracellular calcium and calpain regulate cardiac ankyrin-B levels, and ankyrin-B is required for normal cardioprotection following ischemia reperfusion injury.[46]

Interactions

References

  1. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  2. ^ a b "Entrez Gene: ANK2 ankyrin 2, neuronal".
  3. ^ Schott JJ, Charpentier F, Peltier S, Foley P, Drouin E, Bouhour JB, Donnelly P, Vergnaud G, Bachner L, Moisan JP, et al. (November 1995). "Mapping of a gene for long QT syndrome to chromosome 4q25-27". Am. J. Hum. Genet. 57 (5): 1114–22. PMC 1801360. PMID 7485162.
  4. ^ "Protein sequences of human ANK2 (Uniprot ID Q01484)". UniProt. Retrieved 12 July 2015.
  5. ^ Wu, HC; Yamankurt, G; Luo, J; Subramaniam, J; Hashmi, SS; Hu, H; Cunha, SR (24 June 2015). "Identification and characterization of two ankyrin-B isoforms in mammalian heart". Cardiovascular Research. 107 (4): 466–77. doi:10.1093/cvr/cvv184. PMC 4540146. PMID 26109584.
  6. ^ van Oort, RJ; Altamirano, J; Lederer, WJ; Wehrens, XH (December 2008). "Alternative splicing: a key mechanism for ankyrin-B functional diversity?". Journal of Molecular and Cellular Cardiology. 45 (6): 709–11. doi:10.1016/j.yjmcc.2008.08.016. PMC 2606664. PMID 18838078.
  7. ^ Cunha, SR; Le Scouarnec, S; Schott, JJ; Mohler, PJ (December 2008). "Exon organization and novel alternative splicing of the human ANK2 gene: implications for cardiac function and human cardiac disease". Journal of Molecular and Cellular Cardiology. 45 (6): 724–34. doi:10.1016/j.yjmcc.2008.08.005. PMC 2630508. PMID 18790697.
  8. ^ Mohler, PJ; Gramolini, AO; Bennett, V (15 April 2002). "Ankyrins". Journal of Cell Science. 115 (Pt 8): 1565–6. PMID 11950874.
  9. ^ a b c Mohler, PJ; Gramolini, AO; Bennett, V (22 March 2002). "The ankyrin-B C-terminal domain determines activity of ankyrin-B/G chimeras in rescue of abnormal inositol 1,4,5-trisphosphate and ryanodine receptor distribution in ankyrin-B (-/-) neonatal cardiomyocytes". The Journal of Biological Chemistry. 277 (12): 10599–607. doi:10.1074/jbc.m110958200. PMID 11781319.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  10. ^ a b c Mohler, PJ; Davis, JQ; Bennett, V (December 2005). "Ankyrin-B coordinates the Na/K ATPase, Na/Ca exchanger, and InsP3 receptor in a cardiac T-tubule/SR microdomain". PLOS Biology. 3 (12): e423. doi:10.1371/journal.pbio.0030423. PMC 1287507. PMID 16292983.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  11. ^ Eber, SW; Gonzalez, JM; Lux, ML; Scarpa, AL; Tse, WT; Dornwell, M; Herbers, J; Kugler, W; Ozcan, R; Pekrun, A; Gallagher, PG; Schröter, W; Forget, BG; Lux, SE (June 1996). "Ankyrin-1 mutations are a major cause of dominant and recessive hereditary spherocytosis". Nature Genetics. 13 (2): 214–8. doi:10.1038/ng0696-214. PMID 8640229.
  12. ^ Mohler, PJ; Rivolta, I; Napolitano, C; LeMaillet, G; Lambert, S; Priori, SG; Bennett, V (14 December 2004). "Nav1.5 E1053K mutation causing Brugada syndrome blocks binding to ankyrin-G and expression of Nav1.5 on the surface of cardiomyocytes". Proceedings of the National Academy of Sciences of the United States of America. 101 (50): 17533–8. Bibcode:2004PNAS..10117533M. doi:10.1073/pnas.0403711101. PMC 536011. PMID 15579534.
  13. ^ a b Mohler, PJ; Davis, JQ; Davis, LH; Hoffman, JA; Michaely, P; Bennett, V (26 March 2004). "Inositol 1,4,5-trisphosphate receptor localization and stability in neonatal cardiomyocytes requires interaction with ankyrin-B". The Journal of Biological Chemistry. 279 (13): 12980–7. doi:10.1074/jbc.m313979200. PMID 14722080.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  14. ^ a b Mohler, PJ; Hoffman, JA; Davis, JQ; Abdi, KM; Kim, CR; Jones, SK; Davis, LH; Roberts, KF; Bennett, V (11 June 2004). "Isoform specificity among ankyrins. An amphipathic alpha-helix in the divergent regulatory domain of ankyrin-b interacts with the molecular co-chaperone Hdj1/Hsp40". The Journal of Biological Chemistry. 279 (24): 25798–804. doi:10.1074/jbc.m401296200. PMID 15075330.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  15. ^ Tuvia, S; Buhusi, M; Davis, L; Reedy, M; Bennett, V (29 November 1999). "Ankyrin-B is required for intracellular sorting of structurally diverse Ca2+ homeostasis proteins". The Journal of Cell Biology. 147 (5): 995–1008. doi:10.1083/jcb.147.5.995. PMC 2169334. PMID 10579720.
  16. ^ DeGrande, S; Nixon, D; Koval, O; Curran, JW; Wright, P; Wang, Q; Kashef, F; Chiang, D; Li, N; Wehrens, XH; Anderson, ME; Hund, TJ; Mohler, PJ (December 2012). "CaMKII inhibition rescues proarrhythmic phenotypes in the model of human ankyrin-B syndrome". Heart Rhythm. 9 (12): 2034–41. doi:10.1016/j.hrthm.2012.08.026. PMC 3630478. PMID 23059182.
  17. ^ Vatta, M; Chen, PS (December 2012). "CaMKII and ryanodine receptor as new antiarrhythmic targets". Heart Rhythm. 9 (12): 2042–3. doi:10.1016/j.hrthm.2012.09.011. PMID 22982962.
  18. ^ Mohler, PJ; Schott, JJ; Gramolini, AO; Dilly, KW; Guatimosim, S; duBell, WH; Song, LS; Haurogné, K; Kyndt, F; Ali, ME; Rogers, TB; Lederer, WJ; Escande, D; Le Marec, H; Bennett, V (6 February 2003). "Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death". Nature. 421 (6923): 634–9. Bibcode:2003Natur.421..634M. doi:10.1038/nature01335. PMID 12571597.
  19. ^ Camors, E; Mohler, PJ; Bers, DM; Despa, S (June 2012). "Ankyrin-B reduction enhances Ca spark-mediated SR Ca release promoting cardiac myocyte arrhythmic activity". Journal of Molecular and Cellular Cardiology. 52 (6): 1240–8. doi:10.1016/j.yjmcc.2012.02.010. PMC 3348355. PMID 22406428.
  20. ^ Cunha, SR; Bhasin, N; Mohler, PJ (16 February 2007). "Targeting and stability of Na/Ca exchanger 1 in cardiomyocytes requires direct interaction with the membrane adaptor ankyrin-B". The Journal of Biological Chemistry. 282 (7): 4875–83. doi:10.1074/jbc.m607096200. PMID 17178715.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  21. ^ Kline, CF; Kurata, HT; Hund, TJ; Cunha, SR; Koval, OM; Wright, PJ; Christensen, M; Anderson, ME; Nichols, CG; Mohler, PJ (29 September 2009). "Dual role of K ATP channel C-terminal motif in membrane targeting and metabolic regulation". Proceedings of the National Academy of Sciences of the United States of America. 106 (39): 16669–74. Bibcode:2009PNAS..10616669K. doi:10.1073/pnas.0907138106. PMC 2757796. PMID 19805355.
  22. ^ Li, J; Kline, CF; Hund, TJ; Anderson, ME; Mohler, PJ (10 September 2010). "Ankyrin-B regulates Kir6.2 membrane expression and function in heart". The Journal of Biological Chemistry. 285 (37): 28723–30. doi:10.1074/jbc.m110.147868. PMC 2937900. PMID 20610380.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  23. ^ a b Cunha, SR; Mohler, PJ (14 November 2008). "Obscurin targets ankyrin-B and protein phosphatase 2A to the cardiac M-line". The Journal of Biological Chemistry. 283 (46): 31968–80. doi:10.1074/jbc.m806050200. PMC 2581558. PMID 18782775.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  24. ^ Ayalon, G; Hostettler, JD; Hoffman, J; Kizhatil, K; Davis, JQ; Bennett, V (4 March 2011). "Ankyrin-B interactions with spectrin and dynactin-4 are required for dystrophin-based protection of skeletal muscle from exercise injury". The Journal of Biological Chemistry. 286 (9): 7370–8. doi:10.1074/jbc.m110.187831. PMC 3044993. PMID 21186323.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  25. ^ Hashemi, SM; Hund, TJ; Mohler, PJ (August 2009). "Cardiac ankyrins in health and disease". Journal of Molecular and Cellular Cardiology. 47 (2): 203–9. doi:10.1016/j.yjmcc.2009.04.010. PMC 2745072. PMID 19394342.
  26. ^ Mohler, PJ (October 2006). "Ankyrins and human disease: what the electrophysiologist should know". Journal of Cardiovascular Electrophysiology. 17 (10): 1153–9. doi:10.1111/j.1540-8167.2006.00540.x. PMID 16800854.
  27. ^ Kline, CF; Mohler, PJ (July 2006). "Weighing in on molecular anchors: the role of ankyrin polypeptides in human arrhythmia". Expert Review of Cardiovascular Therapy. 4 (4): 477–85. doi:10.1586/14779072.4.4.477. PMID 16918266.
  28. ^ Mohler, PJ; Le Scouarnec, S; Denjoy, I; Lowe, JS; Guicheney, P; Caron, L; Driskell, IM; Schott, JJ; Norris, K; Leenhardt, A; Kim, RB; Escande, D; Roden, DM (30 January 2007). "Defining the cellular phenotype of "ankyrin-B syndrome" variants: human ANK2 variants associated with clinical phenotypes display a spectrum of activities in cardiomyocytes". Circulation. 115 (4): 432–41. doi:10.1161/circulationaha.106.656512. PMID 17242276.
  29. ^ Tomaselli, GF (30 January 2007). "A failure to adapt: ankyrins in congenital and acquired arrhythmias". Circulation. 115 (4): 428–9. doi:10.1161/circulationaha.106.675389. PMID 17261669.
  30. ^ Mohler, PJ; Healy, JA; Xue, H; Puca, AA; Kline, CF; Allingham, RR; Kranias, EG; Rockman, HA; Bennett, V (17 October 2007). "Ankyrin-B syndrome: enhanced cardiac function balanced by risk of cardiac death and premature senescence". PLOS One. 2 (10): e1051. Bibcode:2007PLoSO...2.1051M. doi:10.1371/journal.pone.0001051. PMC 2013943. PMID 17940615.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  31. ^ Bush, WS; Crawford, DC; Alexander, C; George AL, Jr; Roden, DM; Ritchie, MD (June 2009). "Genetic variation in the rhythmonome: ethnic variation and haplotype structure in candidate genes for arrhythmias". Pharmacogenomics. 10 (6): 1043–53. doi:10.2217/pgs.09.67. PMC 2746955. PMID 19530973.
  32. ^ Sedlacek, K; Stark, K; Cunha, SR; Pfeufer, A; Weber, S; Berger, I; Perz, S; Kääb, S; Wichmann, HE; Mohler, PJ; Hengstenberg, C; Jeron, A (December 2008). "Common genetic variants in ANK2 modulate QT interval: results from the KORA study". Circulation: Cardiovascular Genetics. 1 (2): 93–9. doi:10.1161/circgenetics.108.792192. PMID 20031550.
  33. ^ Alders, M; Christiaans, I; Pagon, RA; Adam, MP; Ardinger, HH; Wallace, SE; Amemiya, A; Bean, LJH; Bird, TD; Fong, CT; Smith, RJH; Stephens, K (1993). "Long QT Syndrome". PMID 20301308. {{cite journal}}: Cite journal requires |journal= (help)
  34. ^ Wolf, RM; Mitchell, CC; Christensen, MD; Mohler, PJ; Hund, TJ (November 2010). "Defining new insight into atypical arrhythmia: a computational model of ankyrin-B syndrome". American Journal of Physiology. Heart and Circulatory Physiology. 299 (5): H1505–14. doi:10.1152/ajpheart.00503.2010. PMC 2993217. PMID 20729400.
  35. ^ Zhang, T; Moss, A; Cong, P; Pan, M; Chang, B; Zheng, L; Fang, Q; Zareba, W; Robinson, J; Lin, C; Li, Z; Wei, J; Zeng, Q; Long QT International Registry, Investigators; HVP-China, Investigators; Qi, M (November 2010). "LQTS gene LOVD database". Human Mutation. 31 (11): E1801–10. doi:10.1002/humu.21341. PMC 3037562. PMID 20809527.
  36. ^ Wolf, RM; Glynn, P; Hashemi, S; Zarei, K; Mitchell, CC; Anderson, ME; Mohler, PJ; Hund, TJ (May 2013). "Atrial fibrillation and sinus node dysfunction in human ankyrin-B syndrome: a computational analysis". American Journal of Physiology. Heart and Circulatory Physiology. 304 (9): H1253–66. Bibcode:2013BpJ...104S.287W. doi:10.1152/ajpheart.00734.2012. PMC 3652094. PMID 23436330.
  37. ^ Robaei, D; Ford, T; Ooi, SY (February 2015). "Ankyrin-B syndrome: a case of sinus node dysfunction, atrial fibrillation and prolonged QT in a young adult". Heart, Lung & Circulation. 24 (2): e31–4. doi:10.1016/j.hlc.2014.09.013. PMID 25456501.
  38. ^ Mohler PJ, Schott JJ, Gramolini AO, Dilly KW, Guatimosim S, duBell WH, Song LS, Haurogné K, Kyndt F, Ali ME, Rogers TB, Lederer WJ, Escande D, Le Marec H, Bennett V (February 2003). "Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death". Nature. 421 (6923): 634–9. Bibcode:2003Natur.421..634M. doi:10.1038/nature01335. PMID 12571597.
  39. ^ Sherman, J; Tester, DJ; Ackerman, MJ (November 2005). "Targeted mutational analysis of ankyrin-B in 541 consecutive, unrelated patients referred for long QT syndrome genetic testing and 200 healthy subjects". Heart Rhythm. 2 (11): 1218–23. doi:10.1016/j.hrthm.2005.07.026. PMID 16253912.
  40. ^ Mohler, PJ; Splawski, I; Napolitano, C; Bottelli, G; Sharpe, L; Timothy, K; Priori, SG; Keating, MT; Bennett, V (15 June 2004). "A cardiac arrhythmia syndrome caused by loss of ankyrin-B function". Proceedings of the National Academy of Sciences of the United States of America. 101 (24): 9137–42. Bibcode:2004PNAS..101.9137M. doi:10.1073/pnas.0402546101. PMC 428486. PMID 15178757.
  41. ^ Cunha, SR; Hund, TJ; Hashemi, S; Voigt, N; Li, N; Wright, P; Koval, O; Li, J; Gudmundsson, H; Gumina, RJ; Karck, M; Schott, JJ; Probst, V; Le Marec, H; Anderson, ME; Dobrev, D; Wehrens, XH; Mohler, PJ (13 September 2011). "Defects in ankyrin-based membrane protein targeting pathways underlie atrial fibrillation". Circulation. 124 (11): 1212–22. doi:10.1161/circulationaha.111.023986. PMC 3211046. PMID 21859974.
  42. ^ Le Scouarnec, S; Bhasin, N; Vieyres, C; Hund, TJ; Cunha, SR; Koval, O; Marionneau, C; Chen, B; Wu, Y; Demolombe, S; Song, LS; Le Marec, H; Probst, V; Schott, JJ; Anderson, ME; Mohler, PJ (7 October 2008). "Dysfunction in ankyrin-B-dependent ion channel and transporter targeting causes human sinus node disease". Proceedings of the National Academy of Sciences of the United States of America. 105 (40): 15617–22. Bibcode:2008PNAS..10515617L. doi:10.1073/pnas.0805500105. PMC 2563133. PMID 18832177.
  43. ^ Hund, TJ; Mohler, PJ (2008). "Ankyrin-based targeting pathway regulates human sinoatrial node automaticity". Channels (Austin, Tex.). 2 (6): 404–6. doi:10.4161/chan.2.6.7220. PMID 19098452.
  44. ^ Glukhov, AV; Fedorov, VV; Anderson, ME; Mohler, PJ; Efimov, IR (August 2010). "Functional anatomy of the murine sinus node: high-resolution optical mapping of ankyrin-B heterozygous mice". American Journal of Physiology. Heart and Circulatory Physiology. 299 (2): H482–91. doi:10.1152/ajpheart.00756.2009. PMC 2930390. PMID 20525877.
  45. ^ Lopes, LR; Syrris, P; Guttmann, OP; O'Mahony, C; Tang, HC; Dalageorgou, C; Jenkins, S; Hubank, M; Monserrat, L; McKenna, WJ; Plagnol, V; Elliott, PM (February 2015). "Novel genotype-phenotype associations demonstrated by high-throughput sequencing in patients with hypertrophic cardiomyopathy". Heart. 101 (4): 294–301. doi:10.1136/heartjnl-2014-306387. PMC 4345808. PMID 25351510.
  46. ^ Kashef, F; Li, J; Wright, P; Snyder, J; Suliman, F; Kilic, A; Higgins, RS; Anderson, ME; Binkley, PF; Hund, TJ; Mohler, PJ (31 August 2012). "Ankyrin-B protein in heart failure: identification of a new component of metazoan cardioprotection". The Journal of Biological Chemistry. 287 (36): 30268–81. doi:10.1074/jbc.m112.368415. PMC 3436279. PMID 22778271.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  47. ^ Mohler, PJ; Yoon, W; Bennett, V (17 September 2004). "Ankyrin-B targets beta2-spectrin to an intracellular compartment in neonatal cardiomyocytes". The Journal of Biological Chemistry. 279 (38): 40185–93. doi:10.1074/jbc.m406018200. PMID 15262991.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  48. ^ a b Ayalon, G; Davis, JQ; Scotland, PB; Bennett, V (26 December 2008). "An ankyrin-based mechanism for functional organization of dystrophin and dystroglycan". Cell. 135 (7): 1189–200. doi:10.1016/j.cell.2008.10.018. PMID 19109891.
  49. ^ Davis, JQ; Bennett, V (10 November 1984). "Brain ankyrin. A membrane-associated protein with binding sites for spectrin, tubulin, and the cytoplasmic domain of the erythrocyte anion channel". The Journal of Biological Chemistry. 259 (21): 13550–9. PMID 6092380.

External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain.