Gaofen: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
→‎Satellites: added summary statement above table
Rescuing 13 sources and tagging 0 as dead.) #IABot (v2.0.9.5
 
(36 intermediate revisions by 14 users not shown)
Line 2: Line 2:
{{Use American English|date=December 2020}}
{{Use American English|date=December 2020}}
{{Use dmy dates|date=December 2020}}
{{Use dmy dates|date=December 2020}}
{{disputed|Jilin|date=December 2022}}


{{Infobox space program
{{Infobox space program
Line 7: Line 8:
| country = China
| country = China
| status = Active
| status = Active
| duration = 2013–Present
| duration =
| firstflight = 26 April 2013
| firstflight = 26 April 2013
| successes = 35
| lastflight = 20 August 2023
| failures = 2
| successes = 32
| failures = 1
| launchsite = {{Hlist | [[Taiyuan Satellite Launch Center|TSLC]] | [[Jiuquan Satellite Launch Center|JSLC]] | [[Xichang Satellite Launch Center|XSLC]]}}
| launchsite = {{Hlist | [[Taiyuan Satellite Launch Center|TSLC]] | [[Jiuquan Satellite Launch Center|JSLC]] | [[Xichang Satellite Launch Center|XSLC]]}}
| launcher = {{Hlist | [[Long March 2D]] | [[Long March 3B]] | [[Long March 4B]] | [[Long March 4C]] | [[Kuaizhou-1A]] | [[Long March 11|Long March 11H]]}}
| launcher = {{Hlist | [[Long March 2D]] | [[Long March 3B]] | [[Long March 4B]] | [[Long March 4C]] | [[Kuaizhou-1A]] | [[Long March 11|Long March 11H]]}}
| native_name_a = 高分
| native_name_a = 高分
| native_name_r = Gāo Fēn
| native_name_r = Gāo Fēn
| image = File:Chinese News Rendering of Gaofen Satellite.png
}}
}}


'''Gaofen''' ({{Zh|c=高分|p=Gāofēn|l=high resolution}}) is a series of Chinese [[Image resolution|high-resolution]] [[Earth imaging satellite]]s launched as part of the China High-resolution Earth Observation System (CHEOS) program.<ref name="SFN20200908">{{cite web|url=https://spaceflightnow.com/2020/09/08/china-launches-another-gaofen-earth-observation-satellite-2/|title=China launches another Gaofen Earth observation satellite|publisher=Spaceflight Now|date=8 September 2020|access-date=9 September 2020}}</ref><ref name=":0">{{Cite journal |last=Chen |first=Liangfu |last2=Letu |first2=Husi |last3=Fan |first3=Meng |last4=Shang |first4=Huazhe |last5=Tao |first5=Jinhua |last6=Wu |first6=Laixiong |last7=Zhang |first7=Ying |last8=Yu |first8=Chao |last9=Gu |first9=Jianbin |last10=Zhang |first10=Ning |last11=Hong |first11=Jin |date=2022-04-08 |title=An Introduction to the Chinese High-Resolution Earth Observation System: Gaofen-1~7 Civilian Satellites |url=https://spj.sciencemag.org/journals/remotesensing/2022/9769536/ |journal=Journal of Remote Sensing |language=en |volume=2022 |doi=10.34133/2022/9769536}}</ref> CHEOS is a state-sponsored, civilian [[Earth observation satellite|Earth-observation]] program used for [[Agriculture|agricultural]], [[disaster]], [[Natural resource|resource]], and [[environmental monitoring]]. Proposed in 2006 and approved in 2010, the CHEOS program consists of the Gaofen series of space-based [[satellite]]s, [[Mesosphere|near-space]] and airborne systems such as [[airship]]s and [[Unmanned aerial vehicle|UAVs]], ground systems that conduct data receipt, processing, calibration, and taskings, and a system of applications that fuse observation data with other sources to produce usable information and knowledge.<ref name=":0" /><ref>{{Cite presentation |date=February 2014 |title=China High-resolution Earth Observation System (CHEOS) and its Latest Development |url=https://www.unoosa.org/pdf/pres/stsc2014/tech-47E.pdf |conference= |publisher=Earth Observation System and Data Center, [[CNSA]]}}</ref> Although the first seven Gaofen satellites and their payloads have been heavily detailed, little to no details on Gaofen 8 and later satellites have been revealed prompting suggestions that Gaofen satellites may be dual purpose supporting both civilian and military missions.<ref name=":0" /><ref>{{Cite report |url=https://www.thespacereview.com/article/4453/1 |title=An analysis of Chinese remote sensing satellites |last=Smid |first=Henk H.F. |date=26 September 2022 |publisher=Space Review}}</ref><ref>{{Cite news |last=Qi |first=Lu |date=27 December 2021 |title=呂琪:夜空中最亮的星—盤點中國系列衛星 |language=zh |trans-title=[Military Blog Review] Lv Qi: The Brightest Star in the Night Sky - Inventory of Chinese Satellites |work=Lite News Hong Kong |url=https://www.litenews.hk/news/13308-%E3%80%90%E8%BB%8D%E4%BA%8B%E5%8D%9A%E8%A9%95%E3%80%91%E5%91%82%E7%90%AA%EF%BC%9A%E5%A4%9C%E7%A9%BA%E4%B8%AD%E6%9C%80%E4%BA%AE%E7%9A%84%E6%98%9F%E2%80%94%E2%80%94%E7%9B%A4%E9%BB%9E%E4%B8%AD%E5%9C%8B%E7%B3%BB%E5%88%97%E8%A1%9B%E6%98%9F}}</ref><ref>{{Cite news |last=Zhen |first=Liu |date=12 October 2020 |title=China is sending more of its Gaofen satellites into space. Here’s why |work=[[South China Morning Post]] |url=https://www.scmp.com/news/china/military/article/3105209/china-sending-more-its-gaofen-satellites-space-heres-why?module=perpetual_scroll_0&pgtype=article&campaign=3105209}}</ref><ref>{{Cite news |last=Jones |first=Andrew |date=22 November 2021 |title=China launches new Gaofen-11 high resolution spy satellite to match U.S. capabilities |work=[[SpaceNews]] |url=https://spacenews.com/china-launches-new-gaofen-11-high-resolution-spy-satellite-to-match-u-s-capabilities/}}</ref>
'''Gaofen''' ({{Zh|c=高分|p=Gāofēn|l=high resolution}}) is a series of Chinese [[Image resolution|high-resolution]] [[Earth imaging satellite]]s launched as part of the China High-resolution Earth Observation System (CHEOS) program.<ref name="SFN20200908">{{cite web|url=https://spaceflightnow.com/2020/09/08/china-launches-another-gaofen-earth-observation-satellite-2/|title=China launches another Gaofen Earth observation satellite|publisher=Spaceflight Now|date=8 September 2020|access-date=9 September 2020|archive-date=10 September 2020|archive-url=https://web.archive.org/web/20200910173053/https://spaceflightnow.com/2020/09/08/china-launches-another-gaofen-earth-observation-satellite-2/|url-status=live}}</ref><ref name=":0">{{Cite journal |last1=Chen |first1=Liangfu |last2=Letu |first2=Husi |last3=Fan |first3=Meng |last4=Shang |first4=Huazhe |last5=Tao |first5=Jinhua |last6=Wu |first6=Laixiong |last7=Zhang |first7=Ying |last8=Yu |first8=Chao |last9=Gu |first9=Jianbin |last10=Zhang |first10=Ning |last11=Hong |first11=Jin |date=2022-04-08 |title=An Introduction to the Chinese High-Resolution Earth Observation System: Gaofen-1~7 Civilian Satellites |journal=Journal of Remote Sensing |language=en |volume=2022 |pages=1–14 |doi=10.34133/2022/9769536|bibcode=2022JRemS202269536C |s2cid=247446513 |doi-access=free }}</ref> CHEOS is a state-sponsored, civilian [[Earth observation satellite|Earth-observation]] program used for [[Agriculture|agricultural]], [[disaster]], [[Natural resource|resource]], and [[environmental monitoring]]. Proposed in 2006 and approved in 2010, the CHEOS program consists of the Gaofen series of space-based [[satellite]]s, [[Mesosphere|near-space]] and airborne systems such as [[airship]]s and [[Unmanned aerial vehicle|UAVs]], ground systems that conduct data receipt, processing, calibration, and taskings, and a system of applications that fuse observation data with other sources to produce usable information and knowledge.<ref name=":0" /><ref>{{Cite conference |date=February 2014 |title=China High-resolution Earth Observation System (CHEOS) and its Latest Development |url=https://www.unoosa.org/pdf/pres/stsc2014/tech-47E.pdf |conference= |publisher=Earth Observation System and Data Center, [[CNSA]] |access-date=4 June 2022 |archive-date=11 May 2022 |archive-url=https://web.archive.org/web/20220511130306/https://www.unoosa.org/pdf/pres/stsc2014/tech-47E.pdf |url-status=live }}</ref>


Although the first seven Gaofen satellites and their payloads have been heavily detailed, little to no details on Gaofen 8 and later satellites have been revealed prompting suggestions that Gaofen satellites may be dual purpose supporting both civilian and military missions.<ref name=":0" /><ref>{{Cite report |url=https://www.thespacereview.com/article/4453/1 |title=An analysis of Chinese remote sensing satellites |last=Smid |first=Henk H.F. |date=26 September 2022 |publisher=Space Review |access-date=23 October 2022 |archive-date=23 October 2022 |archive-url=https://web.archive.org/web/20221023054740/https://www.thespacereview.com/article/4453/1 |url-status=live }}</ref><ref>{{Cite news |last=Qi |first=Lu |date=27 December 2021 |title=呂琪:夜空中最亮的星—盤點中國系列衛星 |language=zh |trans-title=[Military Blog Review] Lv Qi: The Brightest Star in the Night Sky - Inventory of Chinese Satellites |work=Lite News Hong Kong |url=https://www.litenews.hk/news/13308-%E3%80%90%E8%BB%8D%E4%BA%8B%E5%8D%9A%E8%A9%95%E3%80%91%E5%91%82%E7%90%AA%EF%BC%9A%E5%A4%9C%E7%A9%BA%E4%B8%AD%E6%9C%80%E4%BA%AE%E7%9A%84%E6%98%9F%E2%80%94%E2%80%94%E7%9B%A4%E9%BB%9E%E4%B8%AD%E5%9C%8B%E7%B3%BB%E5%88%97%E8%A1%9B%E6%98%9F |access-date=4 September 2022 |archive-date=4 September 2022 |archive-url=https://web.archive.org/web/20220904191031/https://www.litenews.hk/news/13308-%E3%80%90%E8%BB%8D%E4%BA%8B%E5%8D%9A%E8%A9%95%E3%80%91%E5%91%82%E7%90%AA%EF%BC%9A%E5%A4%9C%E7%A9%BA%E4%B8%AD%E6%9C%80%E4%BA%AE%E7%9A%84%E6%98%9F%E2%80%94%E2%80%94%E7%9B%A4%E9%BB%9E%E4%B8%AD%E5%9C%8B%E7%B3%BB%E5%88%97%E8%A1%9B%E6%98%9F |url-status=live }}</ref><ref>{{Cite news |last=Zhen |first=Liu |date=12 October 2020 |title=China is sending more of its Gaofen satellites into space. Here's why |work=[[South China Morning Post]] |url=https://www.scmp.com/news/china/military/article/3105209/china-sending-more-its-gaofen-satellites-space-heres-why?module=perpetual_scroll_0&pgtype=article&campaign=3105209 |access-date=4 September 2022 |archive-date=4 September 2022 |archive-url=https://web.archive.org/web/20220904191028/https://www.scmp.com/news/china/military/article/3105209/china-sending-more-its-gaofen-satellites-space-heres-why?module=perpetual_scroll_0&pgtype=article&campaign=3105209 |url-status=live }}</ref><ref>{{Cite news |last=Jones |first=Andrew |date=22 November 2021 |title=China launches new Gaofen-11 high resolution spy satellite to match U.S. capabilities |work=[[SpaceNews]] |url=https://spacenews.com/china-launches-new-gaofen-11-high-resolution-spy-satellite-to-match-u-s-capabilities/}}</ref>
In 2003, the [[China National Space Administration]] (CNSA) agreed with [[Roscosmos|Roscosomos]] to share Gaofen data for data from Russia's Earth observation satellites of similar capability. This agreement was expanded in August 2021 when leaders from [[BRICS]] [[List of government space agencies|space agencies]] agreed to share space-based remote sensing data.<ref>{{Cite news |last=Iderawumi |first=Mustapha |date=19 August 2021 |title=BRICS Space Agencies Leaders Signed Agreement to Share Remote Sensing Satellite Data |work=Space in Africa |url=https://africanews.space/brics-space-agencies-leaders-signed-agreement-to-share-remote-sensing-satellite-data/ |access-date=19 May 2022}}</ref>

In 2003, the [[China National Space Administration]] (CNSA) agreed with [[Roscosmos]] to share Gaofen data for data from Russia's Earth observation satellites of similar capability. This agreement was expanded in August 2021 when leaders from [[BRICS]] [[List of government space agencies|space agencies]] agreed to share space-based [[remote sensing]] data.<ref>{{Cite news |last=Iderawumi |first=Mustapha |date=19 August 2021 |title=BRICS Space Agencies Leaders Signed Agreement to Share Remote Sensing Satellite Data |work=Space in Africa |url=https://africanews.space/brics-space-agencies-leaders-signed-agreement-to-share-remote-sensing-satellite-data/ |access-date=19 May 2022 |archive-date=19 August 2021 |archive-url=https://web.archive.org/web/20210819203719/https://africanews.space/brics-space-agencies-leaders-signed-agreement-to-share-remote-sensing-satellite-data/ |url-status=live }}</ref>


== Notable satellites ==
== Notable satellites ==


=== Gaofen-5 ===
=== Gaofen-5 ===
Gaofen-5 has been lauded as the "flagship of the environment and atmosphere observation satellite in the CHEOS program". Launched on 8 May 2018 from [[Taiyuan Satellite Launch Center]] (TSLC) into [[sun-synchronous orbit]], Gaofen-5 carries six [[Payload|payloads]]: an Advanced [[Hyperspectral imaging|Hyperspectral Imagery]] sensor (AHSI), Atmospheric [[Infrared]] [[Hyperspectral imaging|Ultraspectral]] Sensor (AIUS), Directional [[Polarimetry|Polarization]] Camera (DPC), Environment Monitoring Instrument (EMI), [[Greenhouse gas|Greenhouse-gases]] Monitoring Instrument (GMI), and [[VNIR|Visual and Infrared]] [[Multispectral imaging|Multispectral]] Sensor (VIMS).<ref name=":0" /><ref name=":1">{{Cite journal |last=Zhengqiang |first=Li |last2=Hou |first2=Weizhen |last3=Hong |first3=Jin |last4=Zheng |first4=Fengxun |last5=Luo |first5=Donggen |last6=Wang |first6=Jun |last7=Gu |first7=Xingfa |last8=Qiao |first8=Yanli |date=12 April 2018 |title=Directional Polarimetric Camera (DPC): Monitoring aerosol spectral optical properties over land from satellite observation |url=https://arroma.uiowa.edu/docs/publication/paper_pdf/2018/1-s2.0-S002240731830253X-main.pdf |journal=Journal of Quantitative Spectroscopy & Radiative Transfer |location=University of Iowa, Chinese Academy of Sciences |publication-date=7 July 2018 |issue=218 |pages=22–23 |doi=10.1016/j.jqsrt.2018.07.003 |via=Elsevier Science Direct}}</ref>
Gaofen-5 has been lauded as the "flagship of the environment and atmosphere observation satellite in the CHEOS program". Launched on 8 May 2018 from [[Taiyuan Satellite Launch Center]] (TSLC) into [[Sun-synchronous orbit]], Gaofen-5 carries six [[Payload|payloads]]: an Advanced [[Hyperspectral imaging|Hyperspectral Imagery]] sensor (AHSI), Atmospheric [[Infrared]] [[Hyperspectral imaging|Ultraspectral]] Sensor (AIUS), Directional [[Polarimetry|Polarization]] Camera (DPC), Environment Monitoring Instrument (EMI), [[Greenhouse gas|Greenhouse-gases]] Monitoring Instrument (GMI), and [[VNIR|Visual and Infrared]] [[Multispectral imaging|Multispectral]] Sensor (VIMS).<ref name=":0" /><ref name=":1">{{Cite journal |last1=Zhengqiang |first1=Li |last2=Hou |first2=Weizhen |last3=Hong |first3=Jin |last4=Zheng |first4=Fengxun |last5=Luo |first5=Donggen |last6=Wang |first6=Jun |last7=Gu |first7=Xingfa |last8=Qiao |first8=Yanli |date=12 April 2018 |title=Directional Polarimetric Camera (DPC): Monitoring aerosol spectral optical properties over land from satellite observation |url=https://arroma.uiowa.edu/docs/publication/paper_pdf/2018/1-s2.0-S002240731830253X-main.pdf |journal=Journal of Quantitative Spectroscopy & Radiative Transfer |volume=218 |location=University of Iowa, Chinese Academy of Sciences |publication-date=7 July 2018 |issue=218 |pages=22–23 |doi=10.1016/j.jqsrt.2018.07.003 |bibcode=2018JQSRT.218...21L |s2cid=126349523 |via=Elsevier Science Direct |access-date=23 October 2022 |archive-date=23 October 2022 |archive-url=https://web.archive.org/web/20221023054740/https://arroma.uiowa.edu/docs/publication/paper_pdf/2018/1-s2.0-S002240731830253X-main.pdf |url-status=live }}</ref>


The Advanced Hyperspectral Imagery (AHSI) sensor payload aboard Gaofen-5 claims to be the first space-based hyperspectral imaging sensor utilizing both convex grating spectrophotometry and a three concentric-mirror (Offner) configuration.<ref name=":2">{{Cite journal |last=Liu |first=Yin-Nian |last2=Sun |first2=De-Xin |last3=Hu |first3=Xiao-Ning |last4=Liu |first4=Shu-Feng |last5=Cao |first5=Kai-Qin |date=2020-06-01 |title=AHSI: the Hyperspectral Imager on China’s GaoFen-5 Satellite |url=https://ui.adsabs.harvard.edu/abs/2020E&ES..509a2033L |journal=Earth and Environmental Science |volume=509 |issue=1 |pages=012033 |doi=10.1088/1755-1315/509/1/012033}}</ref> The AHSI uses spectrophotometry to measure the light [[Spectral density|spectra]] reflected, transmitted, or emitted by an imaged object to detect or identify objects on the ground.<ref name=":2" /> In civilian applications, the AHSI allows analysts to conduct [[environmental monitoring]] and [[Natural resource|resource]] discovery while in a military application would allow analysts to detect and identify an adversary's equipment or spot non-[[multi-spectral camouflage]].<ref name=":2" /><ref>{{Cite journal |last=Hsu |first=Su May |last2=Kerekes |first2=J.P. |last3=Berke |first3=Hsiao-Hua |last4=Crooks |first4=S. |date=April 1999 |title=SAR and HSI data fusion for counter CC&D |url=https://ieeexplore.ieee.org/abstract/document/767320 |journal=Proceedings of the 1999 IEEE Radar Conference: Radar into the Next Millennium |pages=218–220 |doi=10.1109/NRC.1999.767320}}</ref><ref name=":3">{{Cite journal |last=Ge |first=Xiangyu |last2=Ding |first2=Jianli |last3=Teng |first3=Dexiong |last4=Xie |first4=Boqiang |last5=Zhang |first5=Xianlong |last6=Wang |first6=Jinjie |last7=Han |first7=Lijing |last8=Bao |first8=Qingling |last9=Wang |first9=Jingzhe |date=2022-08-01 |title=Exploring the capability of Gaofen-5 hyperspectral data for assessing soil salinity risks |url=https://www.sciencedirect.com/science/article/pii/S1569843222001625 |journal=International Journal of Applied Earth Observation and Geoinformation |language=en |volume=112 |pages=102969 |doi=10.1016/j.jag.2022.102969 |issn=1569-8432}}</ref> AHSI has a 30 meter [[spatial resolution]] and 5 nanometer [[spectral resolution]] in the visible, near-infrared (NIR), and short-wave infrared (SWIR) [[wavelength]] ranges.<ref name=":3" />
The Advanced Hyperspectral Imagery (AHSI) sensor payload aboard Gaofen-5 claims to be the first space-based hyperspectral imaging sensor utilizing both convex grating spectrophotometry and a three concentric-mirror (Offner) configuration.<ref name=":2">{{Cite journal |last1=Liu |first1=Yin-Nian |last2=Sun |first2=De-Xin |last3=Hu |first3=Xiao-Ning |last4=Liu |first4=Shu-Feng |last5=Cao |first5=Kai-Qin |date=2020-06-01 |title=AHSI: the Hyperspectral Imager on China's GaoFen-5 Satellite |journal=Earth and Environmental Science |volume=509 |issue=1 |pages=012033 |doi=10.1088/1755-1315/509/1/012033|bibcode=2020E&ES..509a2033L |s2cid=225552086 |doi-access=free }}</ref> The AHSI uses spectrophotometry to measure the light [[Spectral density|spectra]] reflected, transmitted, or emitted by an imaged object to detect or identify objects on the ground.<ref name=":2" /> In civilian applications, the AHSI allows analysts to conduct [[environmental monitoring]] and [[Natural resource|resource]] discovery while in a military application would allow analysts to detect and identify an adversary's equipment or spot non-[[multi-spectral camouflage]].<ref name=":2" /><ref>{{Cite book |last1=Hsu |first1=Su May |last2=Kerekes |first2=J.P. |last3=Berke |first3=Hsiao-Hua |last4=Crooks |first4=S. |title=Proceedings of the 1999 IEEE Radar Conference. Radar into the Next Millennium (Cat. No.99CH36249) |chapter=SAR and HSI data fusion for counter CC&D |date=April 1999 |chapter-url=https://ieeexplore.ieee.org/document/767320 |pages=218–220 |doi=10.1109/NRC.1999.767320 |isbn=0-7803-4977-6 |s2cid=15912558 |access-date=25 October 2022 |archive-date=24 October 2022 |archive-url=https://web.archive.org/web/20221024090108/https://ieeexplore.ieee.org/document/767320/ |url-status=live }}</ref><ref name=":3">{{Cite journal |last1=Ge |first1=Xiangyu |last2=Ding |first2=Jianli |last3=Teng |first3=Dexiong |last4=Xie |first4=Boqiang |last5=Zhang |first5=Xianlong |last6=Wang |first6=Jinjie |last7=Han |first7=Lijing |last8=Bao |first8=Qingling |last9=Wang |first9=Jingzhe |date=2022-08-01 |title=Exploring the capability of Gaofen-5 hyperspectral data for assessing soil salinity risks |journal=International Journal of Applied Earth Observation and Geoinformation |language=en |volume=112 |pages=102969 |doi=10.1016/j.jag.2022.102969 |s2cid=251557178 |issn=1569-8432|doi-access=free }}</ref> AHSI has a 30 meter [[spatial resolution]] and 5 nanometer [[spectral resolution]] in the visible, near-infrared (NIR), and short-wave infrared (SWIR) [[wavelength]] ranges.<ref name=":3" />


The Atmospheric Infrared Ultraspectral Sensor (AIUS) payload aboard Gaofen-5 is China's first [[Hyperspectral imaging|hyperspectral]] [[occultation]] [[spectrometer]] meaning it measures the spectra of imaged [[Atmospheric chemistry|atmospheric particles]] between the sensor and the Sun.<ref>{{Cite journal |last=Li |first=Xiaoying |last2=Xu |first2=Jian |last3=Cheng |first3=Tianhai |last4=Shi |first4=Hailiang |last5=Zhang |first5=Xingying |last6=Ge |first6=Shule |last7=Wang |first7=Hongmei |last8=Zhu |first8=Songyan |last9=Miao |first9=Jing |last10=Luo |first10=Qi |date=January 2019 |title=Monitoring Trace Gases over the Antarctic Using Atmospheric Infrared Ultraspectral Sounder Onboard GaoFen-5: Algorithm Description and First Retrieval Results of O3, H2O, and HCl |url=https://www.mdpi.com/2072-4292/11/17/1991 |journal=Remote Sensing |language=en |volume=11 |issue=17 |pages=1991 |doi=10.3390/rs11171991 |issn=2072-4292}}</ref><ref name=":4">{{Cite presentation |last=Chen |first=Liangfu |date=13 October 2016 |title=Mission Overview GaoFen-5 |url=https://ceos.org/document_management/Virtual_Constellations/ACC/Meetings/AC-VC-12/Day%201/5.%20Linagfu%20Chen%20-%20Gaofeng-5%201013.pdf |conference=12th Meeting of the CEOS Atmospheric Composition Virtual Constellation |type=PowerPoint presentation |publication-place=Seoul, Korea}}</ref> AIUS allows scientists to monitor [[atmospheric circulation]] by tracing {{chem|H|2|O}} ([[water vapor]]), temperature, pressure, and various carbon and halogen-containing gas pollutants such as [[Chlorofluorocarbon|chloroflourocarbons]] (CFCs), [[dinitrogen pentoxide]], and [[chlorine nitrate]].<ref name=":4" /><ref>{{Cite journal |last=Chen |first=L. |last2=Tao |first2=M. |last3=Wang |first3=Z. |date=2018-12-01 |title=The GaoFen-5 satellite for air pollution monitoring in China: first results and general performance |url=https://ui.adsabs.harvard.edu/abs/2018AGUFM.A51A..04C |volume=2018 |pages=A51A–04}}</ref> A [[Michelson interferometer]], AIUS images wavelengths between 2.4 and 13.3 [[Micrometre|micrometers]] (near to mid-wave [[infrared]]) at a 0.3 [[Centimetre|centimeter]] resolution and a ±10° [[field of view]].<ref name=":4" />
The Atmospheric Infrared Ultraspectral Sensor (AIUS) payload aboard Gaofen-5 is China's first [[Hyperspectral imaging|hyperspectral]] [[occultation]] [[spectrometer]] meaning it measures the spectra of imaged [[Atmospheric chemistry|atmospheric particles]] between the sensor and the Sun.<ref>{{Cite journal |last1=Li |first1=Xiaoying |last2=Xu |first2=Jian |last3=Cheng |first3=Tianhai |last4=Shi |first4=Hailiang |last5=Zhang |first5=Xingying |last6=Ge |first6=Shule |last7=Wang |first7=Hongmei |last8=Zhu |first8=Songyan |last9=Miao |first9=Jing |last10=Luo |first10=Qi |date=January 2019 |title=Monitoring Trace Gases over the Antarctic Using Atmospheric Infrared Ultraspectral Sounder Onboard GaoFen-5: Algorithm Description and First Retrieval Results of O3, H2O, and HCl |journal=Remote Sensing |language=en |volume=11 |issue=17 |pages=1991 |doi=10.3390/rs11171991 |bibcode=2019RemS...11.1991L |issn=2072-4292|doi-access=free }}</ref><ref name=":4">{{Cite conference |last=Chen |first=Liangfu |date=13 October 2016 |title=Mission Overview GaoFen-5 |url=https://ceos.org/document_management/Virtual_Constellations/ACC/Meetings/AC-VC-12/Day%201/5.%20Linagfu%20Chen%20-%20Gaofeng-5%201013.pdf |conference=12th Meeting of the CEOS Atmospheric Composition Virtual Constellation |type=PowerPoint presentation |publication-place=Seoul, Korea |access-date=23 October 2022 |archive-date=23 October 2022 |archive-url=https://web.archive.org/web/20221023054742/https://ceos.org/document_management/Virtual_Constellations/ACC/Meetings/AC-VC-12/Day%201/5.%20Linagfu%20Chen%20-%20Gaofeng-5%201013.pdf |url-status=live }}</ref> AIUS allows scientists to monitor [[atmospheric circulation]] by tracing {{chem|H|2|O}} ([[water vapor]]), temperature, pressure, and various carbon and halogen-containing gas pollutants such as [[chlorofluorocarbon]]s (CFCs), [[dinitrogen pentoxide]], and [[chlorine nitrate]].<ref name=":4" /><ref>{{Cite journal |last1=Chen |first1=L. |last2=Tao |first2=M. |last3=Wang |first3=Z. |date=2018-12-01 |title=The GaoFen-5 satellite for air pollution monitoring in China: first results and general performance |journal=AGU Fall Meeting Abstracts |url=https://ui.adsabs.harvard.edu/abs/2018AGUFM.A51A..04C |volume=2018 |pages=A51A–04 |bibcode=2018AGUFM.A51A..04C |access-date=23 October 2022 |archive-date=23 October 2022 |archive-url=https://web.archive.org/web/20221023054740/https://ui.adsabs.harvard.edu/abs/2018AGUFM.A51A..04C |url-status=live }}</ref> A [[Michelson interferometer]], AIUS images wavelengths between 2.4 and 13.3 [[Micrometre|micrometers]] (near to mid-wave [[infrared]]) at a 0.3 [[Centimetre|centimeter]] resolution and a ±10° [[field of view]].<ref name=":4" />


Gaofen-5's Directional Polarimetric Camera (DPC) is China's first space-based multi-angle polarimetric camera.<ref name=":1" /> Prior to GF-5's launch, in September 2016, China had experimented with polarimetric imaging in 2016 aboard the [[Tiangong-2]] space laboratory and launched its Cloud and Aerosol Polarimetric Imager (CAPI) aboard [[TanSat]] in December of that year.<ref name=":1" /><ref>{{Cite web |title=TanSat |url=https://www.eoportal.org/satellite-missions/tansat |website=eoPortal}}</ref> CAPI imaged clouds within 670 and 1640 [[Nanometre|nanometer]] channels but was restricted to fixed-angle imaging. The DPC aboard Gaofen-5 enables [[Atmospheric chemistry|atmospheric]] [[spectroscopy]] in three polarized bands (90, 670, and 865&nbsp;[[Nanometre|nm]]; polarized at 0°, 60°, and 120°) and five non-polarized bands (443, 565, 763, 765, and 910&nbsp;nm), all wavelengths from [[green]] to [[Infrared|near-infrared]] (NIR). A step motor rotates the 512&nbsp;×&nbsp;512&nbsp;[[pixel]] [[charge-coupled device]] (CCD) imager ±50° providing a 1,850&nbsp;km swath of [[Satellite imagery|imagery]] at 3.3&nbsp;km resolution.<ref name=":1" /><ref>{{Cite journal |last=Qie |first=Lili |last2=Li |first2=Zhengqiang |last3=Zhu |first3=Sifeng |last4=Xu |first4=Hua |last5=Xie |first5=Yisong |last6=Qiao |first6=Rui |last7=Hong |first7=Jun |last8=Tu |first8=Bihai |date=13 August 2021 |title=In-flight radiometric and polarimetric calibration of the Directional Polarimetric Camera onboard the GaoFen-5 satellite over the ocean |url=https://opg.optica.org/ao/viewmedia.cfm?uri=ao-60-24-7186 |journal=Applied Optics |volume=60 |issue=24 |pages=7186–7199 |doi=10.1364/AO.422980 |via=Optica Publishing Group}}</ref>
Gaofen-5's Directional Polarimetric Camera (DPC) is China's first space-based multi-angle polarimetric camera.<ref name=":1" /> Prior to GF-5's launch, in September 2016, China had experimented with polarimetric imaging in 2016 aboard the [[Tiangong-2]] space laboratory and launched its Cloud and Aerosol Polarimetric Imager (CAPI) aboard [[TanSat]] in December of that year.<ref name=":1" /><ref>{{Cite web |title=TanSat |url=https://www.eoportal.org/satellite-missions/tansat |website=eoPortal |access-date=23 October 2022 |archive-date=23 October 2022 |archive-url=https://web.archive.org/web/20221023054741/https://www.eoportal.org/satellite-missions/tansat |url-status=live }}</ref> CAPI imaged clouds within 670 and 1640 [[Nanometre|nanometer]] channels but was restricted to fixed-angle imaging. The DPC aboard Gaofen-5 enables [[Atmospheric chemistry|atmospheric]] [[spectroscopy]] in three polarized bands (90, 670, and 865&nbsp;[[Nanometre|nm]]; polarized at 0°, 60°, and 120°) and five non-polarized bands (443, 565, 763, 765, and 910&nbsp;nm), all wavelengths from [[green]] to [[Infrared|near-infrared]] (NIR). A step motor rotates the 512&nbsp;×&nbsp;512&nbsp;[[pixel]] [[charge-coupled device]] (CCD) imager ±50° providing a 1,850&nbsp;km swath of [[Satellite imagery|imagery]] at 3.3&nbsp;km resolution.<ref name=":1" /><ref>{{Cite journal |last1=Qie |first1=Lili |last2=Li |first2=Zhengqiang |last3=Zhu |first3=Sifeng |last4=Xu |first4=Hua |last5=Xie |first5=Yisong |last6=Qiao |first6=Rui |last7=Hong |first7=Jun |last8=Tu |first8=Bihai |date=13 August 2021 |title=In-flight radiometric and polarimetric calibration of the Directional Polarimetric Camera onboard the GaoFen-5 satellite over the ocean |url=https://opg.optica.org/ao/viewmedia.cfm?uri=ao-60-24-7186 |journal=Applied Optics |volume=60 |issue=24 |pages=7186–7199 |doi=10.1364/AO.422980 |pmid=34613006 |bibcode=2021ApOpt..60.7186Q |s2cid=237688592 |access-date=23 October 2022 |archive-date=23 October 2022 |archive-url=https://web.archive.org/web/20221023054740/https://opg.optica.org/ao/viewmedia.cfm?uri=ao-60-24-7186 |url-status=live }}</ref>


== Satellites ==
== Satellites ==
Since the program's start in 2013, the People's Republic of China has launched 30 Gaofen-series satellites and has not yet experienced a launch failure. [[Jilin-1|Jilin-1 satellites]] described as 'Gaofen' are not part of the government's Gaofen series, rather are described as having high resolution ({{Zh|c=高分|p=Gāofēn}}).<ref>{{Cite news |last=Jones |first=Andrew |date=9 December 2022 |title=China launches hyperspectral Earth-imaging satellite to orbit (video) |work=[[Space.com]] |url=https://www.space.com/china-launches-earth-imaging-satellite-gaofen-5-01a |access-date=11 December 2022 |archive-date=11 December 2022 |archive-url=https://web.archive.org/web/20221211220932/https://www.space.com/china-launches-earth-imaging-satellite-gaofen-5-01a |url-status=live }}</ref>
The People's Republic of China has attempted to launch 78 Gaofen-series satellites with 76 successfully launched and 2 unsuccessfully launched contributing to a 97% success rate.
{| class="wikitable sortable"
{| class="wikitable sortable"


!Designation
!Designation
!Launch date<br />([[Coordinated Universal Time|UTC]])
!Launch date<br />([[Coordinated Universal Time|UTC]])
!Payloads
!Payloads!! [[Satellite Catalog Number|SCN]]!! [[International Designator|COSPAR ID]] !! Orbit
!Orbit!! [[Apsis|Orbital apsis]]
!Inclination!! Launch vehicle !! Launch site !! Status
!Inclination!! [[Satellite Catalog Number|SCN]]!! [[International Designator|COSPAR ID]] !! Launch vehicle !! Launch site !! Status
|-
|-
|[[Gaofen 1]]
|[[Gaofen 1]]
|26 April 2013
|26 April 2013
|2m [[Panchromatic film|PAN]], 8m [[Multispectral imaging|MSI]], 4x 16m [[Wide-angle lens|WFV]] [[Multispectral imaging|MSI]]|| 39150 || {{Cospar|id=2013-018A}}|| 632.8&nbsp;km × 662.7&nbsp;km
|2m [[Panchromatic film|PAN]], 8m [[Multispectral imaging|MSI]], 4x 16m [[Wide-angle lens|WFV]] [[Multispectral imaging|MSI]]
|[[Sun-synchronous orbit|SSO]]|| 632.8&nbsp;km × 662.7&nbsp;km
|98.1°|| [[Long March 2D]] || [[Jiuquan Satellite Launch Center|Jiuquan SLC]]|| Operational
|98.1°|| 39150 || {{Cospar|id=2013-018A}}|| [[Long March 2D]] || [[Jiuquan Satellite Launch Center|Jiuquan SLC]]|| {{Good|Operational}}
|-
|-
|Gaofen 2
|Gaofen 2
|19 August 2014
|19 August 2014
|0.8m [[Panchromatic film|PAN]], 3.2m [[Multispectral imaging|MSI]]
|0.8m [[Panchromatic film|PAN]], 3.2m [[Multispectral imaging|MSI]]
|[[Sun-synchronous orbit|SSO]]
|40118
|{{COSPAR|2014-049A}}
|630.5&nbsp;km × 638.0&nbsp;km
|630.5&nbsp;km × 638.0&nbsp;km
|97.7°
|97.7°
|40118
|{{COSPAR|2014-049A}}
|[[Long March 4B]]
|[[Long March 4B]]
|[[Taiyuan Satellite Launch Center|Taiyuan SLC]]
|[[Taiyuan Satellite Launch Center|Taiyuan SLC]]
|Operational
|{{Good|Operational}}
|-
|-
|Gaofen 8
|Gaofen 8
|26 June 2015
|26 June 2015
|[[Electro-optical sensor|EO]]
|
|[[Sun-synchronous orbit|SSO]]
|501.7&nbsp;km × 504.5&nbsp;km
|97.6°
|40701
|40701
|{{COSPAR|2015-030A}}
|{{COSPAR|2015-030A}}
|501.7&nbsp;km × 504.5&nbsp;km
|97.6°
|[[Long March 4B]]
|[[Long March 4B]]
|[[Taiyuan Satellite Launch Center|Taiyuan SLC]]
|[[Taiyuan Satellite Launch Center|Taiyuan SLC]]
|Operational
|{{Good|Operational}}
|-
|-
|Gaofen 9-01
|Gaofen 9-01
|14 September 2015
|14 September 2015
|[[Electro-optical sensor|EO]]
|[[Electro-optical sensor|EO]]
|[[Sun-synchronous orbit|SSO]]
|40894
|{{COSPAR|2015-047A}}
|624.5&nbsp;km × 671.3&nbsp;km
|624.5&nbsp;km × 671.3&nbsp;km
|97.8°
|97.8°
|40894
|{{COSPAR|2015-047A}}
|[[Long March 2D]]
|[[Long March 2D]]
|[[Jiuquan Satellite Launch Center|Jiuquan SLC]]
|[[Jiuquan Satellite Launch Center|Jiuquan SLC]]
|Operational
|{{Good|Operational}}
|-
|-
|Gaofen 4
|Gaofen 4
|28 December 2015
|28 December 2015
|50m [[Visible spectrum|VIS]], 400m [[MWIR]]
|50m [[Visible spectrum|VIS]], 400m [[MWIR]]
|[[Geostationary orbit|GEO]]
|41194
|{{COSPAR|2015-083A}}
|35,782.4&nbsp;km × 35,806.4&nbsp;km
|35,782.4&nbsp;km × 35,806.4&nbsp;km
|0.1°
|0.1°
|41194
|{{COSPAR|2015-083A}}
|[[Long March 3B]]
|[[Long March 3B]]
|[[Xichang Satellite Launch Center|Xichang SLC]]
|[[Xichang Satellite Launch Center|Xichang SLC]]
|Operational
|{{Good|Operational}}
|-
|-
|Gaofen 3
|Gaofen 3
|9 August 2016
|9 August 2016
|[[C band (IEEE)|C-band]] [[Synthetic-aperture radar|SAR]]
|[[C band (IEEE)|C-band]] [[Synthetic-aperture radar|SAR]]
|[[Sun-synchronous orbit|SSO]]
|757.9&nbsp;km × 758.8&nbsp;km
|98.4°
|41727
|41727
|{{COSPAR|2016-049A}}
|{{COSPAR|2016-049A}}
|757.9&nbsp;km × 758.8&nbsp;km
|98.4°
|[[Long March 4C]]
|[[Long March 4C]]
|[[Taiyuan Satellite Launch Center|Taiyuan SLC]]
|[[Taiyuan Satellite Launch Center|Taiyuan SLC]]
|Operational
|{{Good|Operational}}
|-
|-
|Gaofen 1-02
|Gaofen 1-02
|31 March 2018
|31 March 2018
|2m [[Panchromatic film|PAN]], 8m [[Multispectral imaging|MSI]], 4x 16m [[Wide-angle lens|WFV]] [[Multispectral imaging|MSI]]|| 43259 || {{COSPAR|2018-031A}}|| 645.4&nbsp;km × 649.0&nbsp;km
|2m [[Panchromatic film|PAN]], 8m [[Multispectral imaging|MSI]], 4x 16m [[Wide-angle lens|WFV]] [[Multispectral imaging|MSI]]
|[[Sun-synchronous orbit|SSO]]|| 645.4&nbsp;km × 649.0&nbsp;km
|97.9°|| [[Long March 4C]] || [[Taiyuan Satellite Launch Center|Taiyuan SLC]]|| Operational
|97.9°|| 43259 || {{COSPAR|2018-031A}}|| [[Long March 4C]] || [[Taiyuan Satellite Launch Center|Taiyuan SLC]]||{{Good|Operational}}
|-
|-
|Gaofen 1-03
|Gaofen 1-03
|31 March 2018
|31 March 2018
|2m [[Panchromatic film|PAN]], 8m [[Multispectral imaging|MSI]], 4x 16m [[Wide-angle lens|WFV]] [[Multispectral imaging|MSI]]|| 43260 || {{COSPAR|2018-031B}}|| 642.9&nbsp;km ×651.9&nbsp;km
|2m [[Panchromatic film|PAN]], 8m [[Multispectral imaging|MSI]], 4x 16m [[Wide-angle lens|WFV]] [[Multispectral imaging|MSI]]
|[[Sun-synchronous orbit|SSO]]|| 642.9&nbsp;km × 651.9&nbsp;km
|97.9°|| [[Long March 4C]]|| [[Taiyuan Satellite Launch Center|Taiyuan SLC]]|| Operational
|97.9°|| 43260 || {{COSPAR|2018-031B}}|| [[Long March 4C]]|| [[Taiyuan Satellite Launch Center|Taiyuan SLC]]||{{Good|Operational}}
|-
|-
|Gaofen 1-04
|Gaofen 1-04
|31 March 2018
|31 March 2018
|2m [[Panchromatic film|PAN]], 8m [[Multispectral imaging|MSI]], 4x 16m [[Wide-angle lens|WFV]] [[Multispectral imaging|MSI]]|| 43262 || {{COSPAR|2018-031D}}|| 644.3&nbsp;km × 650.5&nbsp;km
|2m [[Panchromatic film|PAN]], 8m [[Multispectral imaging|MSI]], 4x 16m [[Wide-angle lens|WFV]] [[Multispectral imaging|MSI]]
|[[Sun-synchronous orbit|SSO]]|| 644.3&nbsp;km × 650.5&nbsp;km
|97.9°|| [[Long March 4C]]|| [[Taiyuan Satellite Launch Center|Taiyuan SLC]]|| Operational
|97.9°|| 43262 || {{COSPAR|2018-031D}}|| [[Long March 4C]]|| [[Taiyuan Satellite Launch Center|Taiyuan SLC]]||{{Good|Operational}}
|-
|-
|Gaofen 5
|Gaofen 5
|8 May 2018
|8 May 2018
|303km [[Polarization (waves)|POL]] [[Multispectral imaging|MSI]], 0.3cm [[Hyperspectral imaging|HSI]], 30m [[Hyperspectral imaging|HSI]]|| 43461 || {{COSPAR|2018-043A}}|| 706.2&nbsp;km × 707.0&nbsp;km
|303km [[Polarization (waves)|POL]] [[Multispectral imaging|MSI]], 0.3cm [[Hyperspectral imaging|HSI]], 30m [[Hyperspectral imaging|HSI]]
|[[Sun-synchronous orbit|SSO]]|| 706.2&nbsp;km × 707.0&nbsp;km
|98.3°|| [[Long March 4C]]|| [[Taiyuan Satellite Launch Center|Taiyuan SLC]]|| Operational
|98.3°|| 43461 || {{COSPAR|2018-043A}}|| [[Long March 4C]]|| [[Taiyuan Satellite Launch Center|Taiyuan SLC]]||{{Good|Operational}}
|-
|-
|Gaofen 6
|Gaofen 6
|2 June 2018
|2 June 2018
|[[Multispectral imaging|MSI]]|| 43484 || {{COSPAR|2018-048A}}|| 641.0&nbsp;km × 654.3&nbsp;km
|[[Multispectral imaging|MSI]]
|[[Sun-synchronous orbit|SSO]]|| 641.0&nbsp;km × 654.3&nbsp;km
|97.9°|| [[Long March 2D]]|| [[Jiuquan Satellite Launch Center|Jiuquan SLC]]|| Operational
|97.9°|| 43484 || {{COSPAR|2018-048A}}|| [[Long March 2D]]|| [[Jiuquan Satellite Launch Center|Jiuquan SLC]]||{{Good|Operational}}
|-
|-
|Gaofen 11-01
|Gaofen 11-01
|31 July 2018
|31 July 2018
|[[Electro-optical sensor|EO]]
|
|[[Sun-synchronous orbit|SSO]]
|493.1&nbsp;km × 512.5&nbsp;km
|97.6°
|43585
|43585
|{{COSPAR|2018-063A}}
|{{COSPAR|2018-063A}}
|493.1&nbsp;km × 512.5&nbsp;km
|97.6°
|[[Long March 4B]]
|[[Long March 4B]]
|[[Taiyuan Satellite Launch Center|Taiyuan SLC]]
|[[Taiyuan Satellite Launch Center|Taiyuan SLC]]
|Operational
|{{Good|Operational}}
|-
|Jilin-1 Gaofen 03A
|5 June 2019
|1m [[Panchromatic film|PAN]], 4m [[Multispectral imaging|MSI]], video
|Unknown*
|2019-032
|Unknown*
|Unknown*
|[[Long March 11|Long March 11H]]
|Tai Rui barge
|Operational
|-
|-
|Gaofen 10R
|Gaofen 10R
|4 October 2019
|4 October 2019
|Unknown
|
|[[Sun-synchronous orbit|SSO]]
|632.0&nbsp;km × 634.4&nbsp;km
|97.9°
|44622
|44622
|{{COSPAR|2019-066A}}
|{{COSPAR|2019-066A}}
|632.0&nbsp;km × 634.4&nbsp;km
|97.9°
|[[Long March 4C]]
|[[Long March 4C]]
|[[Taiyuan Satellite Launch Center|Taiyuan SLC]]
|[[Taiyuan Satellite Launch Center|Taiyuan SLC]]
|Operational
|{{Good|Operational}}
|-
|-
|Gaofen 7
|Gaofen 7
|3 November 2019
|3 November 2019
|2x 0.8m [[Panchromatic film|PAN]], 2.5m [[Multispectral imaging|MSI]]
|
|[[Sun-synchronous orbit|SSO]]
|500.7&nbsp;km × 517.9&nbsp;km
|97.4°
|44703
|44703
|{{COSPAR|2019-072A}}
|{{COSPAR|2019-072A}}
|500.7&nbsp;km × 517.9&nbsp;km
|97.4°
|[[Long March 4B]]
|[[Long March 4B]]
|[[Taiyuan Satellite Launch Center|Taiyuan SLC]]
|[[Taiyuan Satellite Launch Center|Taiyuan SLC]]
|Operational
|{{Good|Operational}}
|-
|Jilin-1 Gaofen 02A
|13 November 2019
|1m [[Panchromatic film|PAN]], 4m [[Multispectral imaging|MSI]], video
|44777
|{{COSPAR|2019-075A}}
|540.9&nbsp;km × 546.8&nbsp;km
|97.7°
|[[Kuaizhou|Kuaizhou-1A]]
|[[Jiuquan Satellite Launch Center|Jiuquan SLC]]
|Operational
|-
|-
|Gaofen 12
|Gaofen 12
|27 November 2019
|27 November 2019
|[[Synthetic-aperture radar|SAR]]
|[[Synthetic-aperture radar|SAR]]
|[[Sun-synchronous orbit|SSO]]
|634.4&nbsp;km × 636.5&nbsp;km
|97.9°
|44819
|44819
|{{COSPAR|2019-082A}}
|{{COSPAR|2019-082A}}
|634.4&nbsp;km × 636.5&nbsp;km
|97.9°
|[[Long March 4C]]
|[[Long March 4C]]
|[[Taiyuan Satellite Launch Center|Taiyuan SLC]]
|[[Taiyuan Satellite Launch Center|Taiyuan SLC]]
|Operational
|{{Good|Operational}}
|-
|Jilin-1 Gaofen 02B
|7 December 2019
|1m [[Panchromatic film|PAN]], 4m [[Multispectral imaging|MSI]], video
|44836
|{{COSPAR|2019-086A}}
|539.1&nbsp;km × 548.5&nbsp;km
|97.7°
|[[Kuaizhou|Kuaizhou-1A]]
|[[Taiyuan Satellite Launch Center|Taiyuan SLC]]
|Operational
|-
|-
|Gaofen 9-02
|Gaofen 9-02
|31 May 2020
|31 May 2020
|[[Electro-optical sensor|EO]]|| 45625 || {{COSPAR|2020-034B}}|| 493.9&nbsp;km × 511.3&nbsp;km
|[[Electro-optical sensor|EO]]
|[[Sun-synchronous orbit|SSO]]|| 493.9&nbsp;km × 511.3&nbsp;km
|97.4°|| [[Long March 2D]]|| [[Jiuquan Satellite Launch Center|Jiuquan SLC]]|| Operational
|97.4°|| 45625 || {{COSPAR|2020-034B}}|| [[Long March 2D]]|| [[Jiuquan Satellite Launch Center|Jiuquan SLC]]||{{Good|Operational}}
|-
|-
|Gaofen 9-03
|Gaofen 9-03
|17 June 2020
|17 June 2020
|[[Electro-optical sensor|EO]]|| 45794 || {{COSPAR|2020-039A}}|| 491.5&nbsp;km × 513.9&nbsp;km
|[[Electro-optical sensor|EO]]
|[[Sun-synchronous orbit|SSO]]|| 491.5&nbsp;km × 513.9&nbsp;km
|97.4°|| [[Long March 2D]]|| [[Jiuquan Satellite Launch Center|Jiuquan SLC]]|| Operational
|97.4°|| 45794 || {{COSPAR|2020-039A}}|| [[Long March 2D]]|| [[Jiuquan Satellite Launch Center|Jiuquan SLC]]||{{Good|Operational}}
|-
|-
|Gaofen DUOMO
|Gaofen DUOMO
|3 July 2020
|3 July 2020
|[[Electro-optical sensor|EO]]|| 45856 || {{COSPAR|2020-042A}}|| 635.5&nbsp;km × 657.6&nbsp;km
|[[Electro-optical sensor|EO]]
|[[Sun-synchronous orbit|SSO]]|| 635.5&nbsp;km × 657.6&nbsp;km
|97.9°|| [[Long March 4B]]|| [[Taiyuan Satellite Launch Center|Taiyuan SLC]]|| Operational
|97.9°|| 45856 || {{COSPAR|2020-042A}}|| [[Long March 4B]]|| [[Taiyuan Satellite Launch Center|Taiyuan SLC]]||{{Good|Operational}}
|-
|Jilin-1 Gaofen 02E
|10 July 2020
|
| colspan="4" |Launch failure
|[[Kuaizhou|Kuaizhou-11]]
|[[Jiuquan Satellite Launch Center|Jiuquan SLC]]
|Failed launch
|-
|-
|Gaofen 9-04
|Gaofen 9-04
|6 August 2020
|6 August 2020
|[[Electro-optical sensor|EO]]
|[[Electro-optical sensor|EO]]
|[[Sun-synchronous orbit|SSO]]
|46025
|{{COSPAR|2020-054A}}
|497.9&nbsp;km × 506.4&nbsp;km
|497.9&nbsp;km × 506.4&nbsp;km
|94.4°
|94.4°
|46025
|{{COSPAR|2020-054A}}
|[[Long March 2D]]
|[[Long March 2D]]
|[[Jiuquan Satellite Launch Center|Jiuquan SLC]]
|[[Jiuquan Satellite Launch Center|Jiuquan SLC]]
|Operational
|{{Good|Operational}}
|-
|-
|Gaofen 9-05
|Gaofen 9-05
|23 August 2020
|23 August 2020
|[[Electro-optical sensor|EO]]
|[[Electro-optical sensor|EO]]
|[[Sun-synchronous orbit|SSO]]
|46232
|{{Cospar|id=2020-058A}}
|493.5&nbsp;km × 511.9&nbsp;km
|493.5&nbsp;km × 511.9&nbsp;km
|97.4°
|97.4°
|46232
|{{Cospar|id=2020-058A}}
|[[Long March 2D]]
|[[Long March 2D]]
|[[Jiuquan Satellite Launch Center|Jiuquan SLC]]
|[[Jiuquan Satellite Launch Center|Jiuquan SLC]]
|Operational
|{{Good|Operational}}
|-
|-
|Gaofen 11-02
|Gaofen 11-02
|7 September 2020
|7 September 2020
|[[Electro-optical sensor|EO]]
|
|[[Sun-synchronous orbit|SSO]]
|500.7&nbsp;km × 505.2&nbsp;km
|97.4°
|46396
|46396
|{{COSPAR|2020-064A}}
|{{COSPAR|2020-064A}}
|500.7&nbsp;km × 505.2&nbsp;km
|97.4°
|[[Long March 4B]]
|[[Long March 4B]]
|[[Taiyuan Satellite Launch Center|Taiyuan SLC]]
|[[Taiyuan Satellite Launch Center|Taiyuan SLC]]
|Operational
|{{Good|Operational}}
|-
|Jilin-1 Gaofen 02C
|12 September 2020
|
| colspan="4" |Launch failure
|[[Kuaizhou|Kuaizhou-1A]]
|[[Jiuquan Satellite Launch Center|Jiuquan SLC]]
|Failed launch
|-
|Jilin-1 Gaofen 03B
| rowspan="9" |15 September 2020
|1m [[Panchromatic film|PAN]], 4m [[Multispectral imaging|MSI]], video
|46454
|{{Cospar|id=2020-065A}}
|525.6&nbsp;km × 546.1&nbsp;km
|97.4°
| rowspan="9" |[[Long March 11|Long March 11H]]
| rowspan="9" |Tai Rui barge
|Operational
|-
|Jilin-1 Gaofen 3C
|1m [[Panchromatic film|PAN]], 4m [[Multispectral imaging|MSI]], video
|46455
|{{Cospar|id=2020-065B}}
|526.3&nbsp;km × 545.1&nbsp;km
|97.4°
|Operational
|-
|Jilin-1 Gaofen 3D
|1m [[Panchromatic film|PAN]], 4m [[Multispectral imaging|MSI]], video
|46456
|{{Cospar|id=2020-065C}}
|526.8&nbsp;km × 544.6&nbsp;km
|97.4°
|Operational
|-
|Jilin-1 Gaofen 3E
|1m [[Panchromatic film|PAN]], 4m [[Multispectral imaging|MSI]], video
|46457
|{{Cospar|id=2020-065D}}
|527.0&nbsp;km × 544.9&nbsp;km
|97.4°
|Operational
|-
|Jilin-1 Gaofen 3F
|1m [[Panchromatic film|PAN]], 4m [[Multispectral imaging|MSI]], video
|46458
|{{Cospar|id=2020-065E}}
|526.5&nbsp;km × 545.4&nbsp;km
|97.4°
|Operational
|-
|Jilin-1 Gaofen 3G
|1m [[Panchromatic film|PAN]], 4m [[Multispectral imaging|MSI]], video
|46459
|{{Cospar|id=2020-065F}}
|525.6&nbsp;km × 545.8&nbsp;km
|97.4°
|Operational
|-
|Jilin-1 Gaofen 3H
|1m [[Panchromatic film|PAN]], 4m [[Multispectral imaging|MSI]], video
|46460
|{{COSPAR|id=2020-065G}}
|526.5&nbsp;km × 545.3&nbsp;km
|97.4°
|Operational
|-
|Jilin-1 Gaofen 3I
|1m [[Panchromatic film|PAN]], 4m [[Multispectral imaging|MSI]], video
|46461
|{{Cospar|id=2020-065H}}
|526.2&nbsp;km × 545.8&nbsp;km
|97.4°
|Operational
|-
|Jilin-1 Gaofen 3J
|1m [[Panchromatic film|PAN]], 4m [[Multispectral imaging|MSI]], video
|46462
|{{Cospar|id=2020-065J}}
|526.8&nbsp;km × 545.0&nbsp;km
|97.4°
|Operational
|-
|-
|Gaofen 13
|Gaofen 13
|11 October 2020
|11 October 2020
|50m [[Visible spectrum|VIS]], 400m [[MWIR]]
|
|[[Geostationary orbit|GEO]]
|35,782.5&nbsp;km × 35,806.1&nbsp;km
|0.2°
|46610
|46610
|{{COSPAR|2020-071A}}
|{{COSPAR|2020-071A}}
|35,782.5&nbsp;km × 35,806.1&nbsp;km
|0.2°
|[[Long March 3B]]
|[[Long March 3B]]
|[[Xichang Satellite Launch Center|Xichang SLC]]
|[[Xichang Satellite Launch Center|Xichang SLC]]
|Operational
|{{Good|Operational}}
|-
|-
|Gaofen 14
|Gaofen 14
|6 December 2020
|6 December 2020
|[[Electro-optical sensor|EO]]
|[[Electro-optical sensor|EO]]
|[[Sun-synchronous orbit|SSO]]
|492.9&nbsp;km × 198.4&nbsp;km
|97.4°
|47231
|47231
|{{COSPAR|2020-092A}}
|{{COSPAR|2020-092A}}
|492.9&nbsp;km × 198.4&nbsp;km
|97.4°
|[[Long March 3B|Long March 3B/G5]]
|[[Long March 3B|Long March 3B/G5]]
|[[Xichang Satellite Launch Center|Xichang SLC]]
|[[Xichang Satellite Launch Center|Xichang SLC]]
|Operational
|{{Good|Operational}}
|-
|-
|Gaofen 12-02
|Gaofen 12-02
|30 March 2021
|30 March 2021
|[[Synthetic-aperture radar|SAR]]
|[[Synthetic-aperture radar|SAR]]
|[[Sun-synchronous orbit|SSO]]
|634.7&nbsp;km × 636.6&nbsp;km
|97.9°
|48079
|48079
|{{COSPAR|2021-026A}}
|{{COSPAR|2021-026A}}
|634.7&nbsp;km × 636.6&nbsp;km
|97.9°
|[[Long March 4C]]
|[[Long March 4C]]
|[[Jiuquan Satellite Launch Center|Jiuquan SLC]]
|[[Jiuquan Satellite Launch Center|Jiuquan SLC]]
|Operational
|{{Good|Operational}}
|-
|Jilin-01 Gaofen 03D-01
| rowspan="3" |3 July 2021
|1m [[Panchromatic film|PAN]], 4m [[Multispectral imaging|MSI]], video
| rowspan="3" |Unknown*
|2021-061?
| rowspan="3" |Unknown*
| rowspan="3" |Unknown*
| rowspan="3" |[[Long March 2D]]
| rowspan="3" |[[Taiyuan Satellite Launch Center|Taiyuan SLC]]
|Operational
|-
|Jilin-01 Gaofen 03D-02
|1m [[Panchromatic film|PAN]], 4m [[Multispectral imaging|MSI]], video
|2021-061?
|Operational
|-
|Jilin-01 Gaofen 03D-03
|1m [[Panchromatic film|PAN]], 4m [[Multispectral imaging|MSI]], video
|2021-061?
|Operational
|-
|-
|Gaofen 5-02
|Gaofen 5-02
|7 September 2021
|7 September 2021
|303km [[Polarization (waves)|POL]] [[Multispectral imaging|MSI]], 0.3cm [[Hyperspectral imaging|HSI]], 30m [[Hyperspectral imaging|HSI]]
|303km [[Polarization (waves)|POL]] [[Multispectral imaging|MSI]], 0.3cm [[Hyperspectral imaging|HSI]], 30m [[Hyperspectral imaging|HSI]]
|[[Sun-synchronous orbit|SSO]]
|705.4&nbsp;km × 710.2&nbsp;km
|98.2°
|49122
|49122
|{{COSPAR|2021-079A}}
|{{COSPAR|2021-079A}}
|705.4&nbsp;km × 710.2&nbsp;km
|98.2°
|[[Long March 4C]]
|[[Long March 4C]]
|[[Taiyuan Satellite Launch Center|Taiyuan SLC]]
|[[Taiyuan Satellite Launch Center|Taiyuan SLC]]
|Operational
|{{Good|Operational}}
|-
|Jilin-1 Gaofen 02D
|27 September 2021
| || 49256 || {{COSPAR|2021-086A}}|| 529.5&nbsp;km × 550.0&nbsp;km
|97.6°|| [[Kuaizhou|Kuaizhou-1A]]|| [[Jiuquan Satellite Launch Center|Jiuquan SLC]]|| Operational
|-
|Jilin-1 Gaofen 02F
|27 October 2021
|1m [[Panchromatic film|PAN]], 4m [[Multispectral imaging|MSI]], video|| 49338 || {{COSPAR|2021-097A}}|| 532.6&nbsp;km × 547.1&nbsp;km
|97.6°|| [[Kuaizhou|Kuaizhou-1A]]|| [[Jiuquan Satellite Launch Center|Jiuquan SLC]]|| Operational
|-
|-
|Gaofen 11-03
|Gaofen 11-03
|20 November 2021
|20 November 2021
| [[Electro-optical sensor|EO]]
| || 49492 || {{COSPAR|2021-107A}}|| 498.6&nbsp;km × 504.8&nbsp;km
|[[Sun-synchronous orbit|SSO]]|| 498.6&nbsp;km × 504.8&nbsp;km
|97.4°|| [[Long March 4B]]|| [[Taiyuan Satellite Launch Center|Taiyuan SLC]]|| Operational
|97.4°|| 49492 || {{COSPAR|2021-107A}}|| [[Long March 4B]]|| [[Taiyuan Satellite Launch Center|Taiyuan SLC]]||{{Good|Operational}}
|-
|-
|Gaofen 3-02
|Gaofen 3-02
|22 November 2021
|22 November 2021
|[[C band (IEEE)|C-band]] [[Synthetic-aperture radar|SAR]]
|[[C band (IEEE)|C-band]] [[Synthetic-aperture radar|SAR]]
|[[Sun-synchronous orbit|SSO]]
|757.5&nbsp;km × 759.2&nbsp;km
|98.4°
|49495
|49495
|{{COSPAR|2021-109A}}
|{{COSPAR|2021-109A}}
|757.5&nbsp;km × 759.2&nbsp;km
|98.4°
|[[Long March 4C]]
|[[Long March 4C]]
|[[Jiuquan Satellite Launch Center|Jiuquan SLC]]
|[[Jiuquan Satellite Launch Center|Jiuquan SLC]]
|Operational
|{{Good|Operational}}
|-
|Jilin-1 Gaofen 03D-10
| rowspan="9" |27 February 2022
| 1m [[Panchromatic film|PAN]], 4m [[Multispectral imaging|MSI]], video|| rowspan="9" | Unknown* || 2022-019?|| rowspan="9" | Unknown*
| rowspan="9" |Unknown*|| rowspan="9" | [[Long March 8]]|| rowspan="9" | [[Wenchang Space Launch Site|Wenchang SLS]]|| Operational
|-
|Jilin-1 Gaofen 03D-11
| 1m [[Panchromatic film|PAN]], 4m [[Multispectral imaging|MSI]], video|| 2022-019?|| Operational
|-
|Jilin-1 Gaofen 03D-12
| 1m [[Panchromatic film|PAN]], 4m [[Multispectral imaging|MSI]], video|| 2022-019?|| Operational
|-
|Jilin-1 Gaofen 03D-13
| 1m [[Panchromatic film|PAN]], 4m [[Multispectral imaging|MSI]], video|| 2022-019?|| Operational
|-
|Jilin-1 Gaofen 03D-14
| 1m [[Panchromatic film|PAN]], 4m [[Multispectral imaging|MSI]], video|| 2022-019?|| Operational
|-
|Jilin-1 Gaofen 03D-15
| 1m [[Panchromatic film|PAN]], 4m [[Multispectral imaging|MSI]], video|| 2022-019?|| Operational
|-
|Jilin-1 Gaofen 03D-16
| 1m [[Panchromatic film|PAN]], 4m [[Multispectral imaging|MSI]], video|| 2022-019?|| Operational
|-
|Jilin-1 Gaofen 03D-17
| 1m [[Panchromatic film|PAN]], 4m [[Multispectral imaging|MSI]], video|| 2022-019?|| Operational
|-
|Jilin-1 Gaofen 03D-18
| 1m [[Panchromatic film|PAN]], 4m [[Multispectral imaging|MSI]], video|| 2022-019?|| Operational
|-
|-
|Gaofen 3-03
|Gaofen 3-03
|6 April 2022
|6 April 2022
|[[C band (IEEE)|C-band]] [[Synthetic-aperture radar|SAR]]|| 52200 || {{COSPAR|2022-035A}}|| 757.8&nbsp;km × 758.9&nbsp;km
|[[C band (IEEE)|C-band]] [[Synthetic-aperture radar|SAR]]
|[[Sun-synchronous orbit|SSO]]|| 757.8&nbsp;km × 758.9&nbsp;km
|98.4°|| [[Long March 4C]]|| [[Jiuquan Satellite Launch Center|Jiuquan SLC]]|| Operational
|98.4°|| 52200 || {{COSPAR|2022-035A}}|| [[Long March 4C]]|| [[Jiuquan Satellite Launch Center|Jiuquan SLC]]||{{Good|Operational}}
|-
|Jilin-1 Gaofen 04A
| rowspan="5" |30 April 2022
|1m [[Panchromatic film|PAN]], 4m [[Multispectral imaging|MSI]], video
|52388
|{{Cospar|id=2022-046A}}
|534.6&nbsp;km × 555.9&nbsp;km
|97.5°
| rowspan="5" |[[Long March 11|Long March 11H]]
| rowspan="5" |Tai Rui barge
|Operational
|-
|Jilin-1 Gaofen 03D-04
|1m [[Panchromatic film|PAN]], 4m [[Multispectral imaging|MSI]], video
|52389
|{{Cospar|id=2022-046B}}
|529.7&nbsp;km × 548.5&nbsp;km
|97.5°
|Operational
|-
|Jilin-1 Gaofen 03D-05
|1m [[Panchromatic film|PAN]], 4m [[Multispectral imaging|MSI]], video
|52390
|{{Cospar|id=2022-046C}}
|528.5&nbsp;km × 548.2&nbsp;km
|97.5°
|Operational
|-
|Jilin-1 Gaofen 03D-06
|1m [[Panchromatic film|PAN]], 4m [[Multispectral imaging|MSI]], video
|52391
|{{Cospar|id=2022-046D}}
|527.8&nbsp;km × 547.8&nbsp;km
|97.5°
|Operational
|-
|Jilin-1 Gaofen 03D-07
|1m [[Panchromatic film|PAN]], 4m [[Multispectral imaging|MSI]], video
|52392
|{{Cospar|id=2022-046E}}
|526.9&nbsp;km × 547.3&nbsp;km
|97.5°
|Operational
|-
|Jilin-1 Gaofen 03D-27
| rowspan="7" |5 May 2022
|1m [[Panchromatic film|PAN]], 4m [[Multispectral imaging|MSI]], video
|52444
|{{Cospar|id=2022-048B}}
|531.5&nbsp;km × 552.0&nbsp;km
|97.7°
| rowspan="7" |[[Long March 2D]]
| rowspan="7" |[[Taiyuan Satellite Launch Center|Taiyuan SLC]]
|Operational
|-
|Jilin-1 Gaofen 03D-28
|1m [[Panchromatic film|PAN]], 4m [[Multispectral imaging|MSI]], video
|52445
|{{Cospar|id=2022-048C}}
|530.9&nbsp;km × 551.6&nbsp;km
|97.7°
|Operational
|-
|Jilin-1 Gaofen 03D-29
|1m [[Panchromatic film|PAN]], 4m [[Multispectral imaging|MSI]], video
|52446
|{{Cospar|id=2022-048D}}
|530.2&nbsp;km × 551.4&nbsp;km
|97.7°
|Operational
|-
|Jilin-1 Gaofen 03D-30
|1m [[Panchromatic film|PAN]], 4m [[Multispectral imaging|MSI]], video
|52447
|{{Cospar|id=2022-048E}}
|529.4&nbsp;km × 551.0&nbsp;km
|97.7°
|Operational
|-
|Jilin-1 Gaofen 03D-31
|1m [[Panchromatic film|PAN]], 4m [[Multispectral imaging|MSI]], video
|52448
|{{Cospar|id=2022-048F}}
|529.3&nbsp;km × 550.3&nbsp;km
|97.7°
|Operational
|-
|Jilin-1 Gaofen 03D-32
|1m [[Panchromatic film|PAN]], 4m [[Multispectral imaging|MSI]], video
|52449
|{{Cospar|id=2022-048G}}
|529.0&nbsp;km × 549.7&nbsp;km
|97.7°
|Operational
|-
|Jilin-1 Gaofen 03D-33
|1m [[Panchromatic film|PAN]], 4m [[Multispectral imaging|MSI]], video
|52450
|{{Cospar|id=2022-048H}}
|528.3&nbsp;km × 549.3&nbsp;km
|97.7°
|Operational
|-
|-
|Gaofen 12-03
|Gaofen 12-03
|27 June 2022
|27 June 2022
|[[Synthetic-aperture radar|SAR]]
|[[Synthetic-aperture radar|SAR]]
|[[Sun-synchronous orbit|SSO]]
|52912
|{{COSPAR|2022-069A}}
|633.3&nbsp;km × 367.1&nbsp;km
|633.3&nbsp;km × 367.1&nbsp;km
|98.0°
|98.0°
|52912
|{{COSPAR|2022-069A}}
|[[Long March 4C]]
|[[Long March 4C]]
|[[Jiuquan Satellite Launch Center|Jiuquan SLC]]
|[[Jiuquan Satellite Launch Center|Jiuquan SLC]]
|Operational
|{{Good|Operational}}
|-
|-
|Jilin-1 Gaofen 03D-35
|Gaofen 5-01A
| rowspan="9" |10 August 2022
|8 December 2022
|[[Hyperspectral imaging|HSI]]
|1m [[Panchromatic film|PAN]], 4m [[Multispectral imaging|MSI]], video
|[[Sun-synchronous orbit|SSO]]
| rowspan="9" |Unknown*
|706.1&nbsp;km × 709.0&nbsp;km
|2022-098?
|98.1°
| rowspan="9" |Unknown*
|54640
| rowspan="9" |Unknown*
|{{COSPAR|2022-165A}}
| rowspan="9" |[[Long March 6]]
| rowspan="9" |[[Taiyuan Satellite Launch Center|Taiyuan SLC]]
|[[Long March 2D]]
|[[Taiyuan Satellite Launch Center|Taiyuan SLC]]
|Operational
|{{Good|Operational}}
|-
|-
|Jilin-1 Gaofen 03D-36
|Gaofen 11-04
|27 December 2022
|1m [[Panchromatic film|PAN]], 4m [[Multispectral imaging|MSI]], video
|[[Electro-optical sensor|EO]]
|2022-098?
|[[Sun-synchronous orbit|SSO]]|| 498.6&nbsp;km × 504.8&nbsp;km
|Operational
|97.4°||54818 || {{COSPAR|2022-176A}} || [[Long March 4B]]|| [[Taiyuan Satellite Launch Center|Taiyuan SLC]]||{{Good|Operational}}
|-
|-
|Jilin-1 Gaofen 03D-37
|Gaofen 13-02
|17 March 2023
|1m [[Panchromatic film|PAN]], 4m [[Multispectral imaging|MSI]], video
|Unknown
|2022-098?
|[[Geostationary orbit|GTO]]
|Operational
|35,788.4&nbsp;km × 35,802.1&nbsp;km
|3.0°
|55912
|{{COSPAR|2023-036A}}
|[[Long March 3B|Long March 3B/E]]
|[[Xichang Satellite Launch Center|Xichang SLC]]
|{{Good|Operational}}
|-
|-
|Jilin-1 Gaofen 03D-38
|Gaofen 12-04
|20 August 2023
|1m [[Panchromatic film|PAN]], 4m [[Multispectral imaging|MSI]], video
|[[Synthetic-aperture radar|SAR]]
|2022-098?
|[[Sun-synchronous orbit|SSO]]
|Operational
|626&nbsp;km × 630&nbsp;km
|97.9°
|57654
|{{COSPAR|2023-132A}}
|[[Long March 4C]]
|[[Jiuquan Satellite Launch Center|Jiuquan SLC]]
|{{Good|Operational}}
|-
|-
| colspan="11" |Table data sourced from previously cited references, [https://celestrak.com/satcat CelesTrak], [https://www.n2yo.com/ N2YO], NASA, and the [https://www.space-track.org/auth/login U.S. Space Force]
|Jilin-1 Gaofen 03D-39
|1m [[Panchromatic film|PAN]], 4m [[Multispectral imaging|MSI]], video
|2022-098?
|Operational
|-
|Jilin-1 Gaofen 03D-40
|1m [[Panchromatic film|PAN]], 4m [[Multispectral imaging|MSI]], video
|2022-098?
|Operational
|-
|Jilin-1 Gaofen 03D-41
|1m [[Panchromatic film|PAN]], 4m [[Multispectral imaging|MSI]], video
|2022-098?
|Operational
|-
|Jilin-1 Gaofen 03D-42
|1m [[Panchromatic film|PAN]], 4m [[Multispectral imaging|MSI]], video
|2022-098?
|Operational
|-
|Jilin-1 Gaofen 03D-43
|1m [[Panchromatic film|PAN]], 4m [[Multispectral imaging|MSI]], video
|2022-098?
|Operational
|-
| colspan="10" |Table data sourced from previously cited references, [https://celestrak.com/satcat CelesTrak], [https://www.n2yo.com/ N2YO], NASA, and the [https://www.space-track.org/auth/login U.S. Space Force]
|}
|}
<nowiki>*</nowiki> Note: Some group-launched Jilin-1 Gaofen satellites have not yet been individually paired with COSPAR IDs and Satellite Catalog Numbers (SCNs) to individually characterize orbits.


== See also ==
== See also ==
Line 640: Line 379:


* [[Yaogan]]
* [[Yaogan]]
* [[Jilin-1]]
* [[Shijian]]
* [[Shijian]]
* [[Fengyun]]
* [[Fengyun]]


== References ==
== References ==
{{reflist}}{{Chinese Reconnaissance Satellites}}{{Rest of the World Reconnaissance Satellites|state=collapsed}}{{CNSA space program|state=collapsed}}
{{reflist}}

{{CNSA space program}}


[[Category:Earth observation satellites of China]]
[[Category:Earth observation satellites of China]]

Latest revision as of 16:14, 2 December 2023

Gaofen Weixing
高分
Gāo Fēn
Program overview
CountryChina
StatusActive
Program history
First flight26 April 2013
Last flight20 August 2023
Successes32
Failures1
Launch site(s)
Vehicle information
Launch vehicle(s)

Gaofen (Chinese: 高分; pinyin: Gāofēn; lit. 'high resolution') is a series of Chinese high-resolution Earth imaging satellites launched as part of the China High-resolution Earth Observation System (CHEOS) program.[1][2] CHEOS is a state-sponsored, civilian Earth-observation program used for agricultural, disaster, resource, and environmental monitoring. Proposed in 2006 and approved in 2010, the CHEOS program consists of the Gaofen series of space-based satellites, near-space and airborne systems such as airships and UAVs, ground systems that conduct data receipt, processing, calibration, and taskings, and a system of applications that fuse observation data with other sources to produce usable information and knowledge.[2][3]

Although the first seven Gaofen satellites and their payloads have been heavily detailed, little to no details on Gaofen 8 and later satellites have been revealed prompting suggestions that Gaofen satellites may be dual purpose supporting both civilian and military missions.[2][4][5][6][7]

In 2003, the China National Space Administration (CNSA) agreed with Roscosmos to share Gaofen data for data from Russia's Earth observation satellites of similar capability. This agreement was expanded in August 2021 when leaders from BRICS space agencies agreed to share space-based remote sensing data.[8]

Notable satellites[edit]

Gaofen-5[edit]

Gaofen-5 has been lauded as the "flagship of the environment and atmosphere observation satellite in the CHEOS program". Launched on 8 May 2018 from Taiyuan Satellite Launch Center (TSLC) into Sun-synchronous orbit, Gaofen-5 carries six payloads: an Advanced Hyperspectral Imagery sensor (AHSI), Atmospheric Infrared Ultraspectral Sensor (AIUS), Directional Polarization Camera (DPC), Environment Monitoring Instrument (EMI), Greenhouse-gases Monitoring Instrument (GMI), and Visual and Infrared Multispectral Sensor (VIMS).[2][9]

The Advanced Hyperspectral Imagery (AHSI) sensor payload aboard Gaofen-5 claims to be the first space-based hyperspectral imaging sensor utilizing both convex grating spectrophotometry and a three concentric-mirror (Offner) configuration.[10] The AHSI uses spectrophotometry to measure the light spectra reflected, transmitted, or emitted by an imaged object to detect or identify objects on the ground.[10] In civilian applications, the AHSI allows analysts to conduct environmental monitoring and resource discovery while in a military application would allow analysts to detect and identify an adversary's equipment or spot non-multi-spectral camouflage.[10][11][12] AHSI has a 30 meter spatial resolution and 5 nanometer spectral resolution in the visible, near-infrared (NIR), and short-wave infrared (SWIR) wavelength ranges.[12]

The Atmospheric Infrared Ultraspectral Sensor (AIUS) payload aboard Gaofen-5 is China's first hyperspectral occultation spectrometer meaning it measures the spectra of imaged atmospheric particles between the sensor and the Sun.[13][14] AIUS allows scientists to monitor atmospheric circulation by tracing H
2
O
(water vapor), temperature, pressure, and various carbon and halogen-containing gas pollutants such as chlorofluorocarbons (CFCs), dinitrogen pentoxide, and chlorine nitrate.[14][15] A Michelson interferometer, AIUS images wavelengths between 2.4 and 13.3 micrometers (near to mid-wave infrared) at a 0.3 centimeter resolution and a ±10° field of view.[14]

Gaofen-5's Directional Polarimetric Camera (DPC) is China's first space-based multi-angle polarimetric camera.[9] Prior to GF-5's launch, in September 2016, China had experimented with polarimetric imaging in 2016 aboard the Tiangong-2 space laboratory and launched its Cloud and Aerosol Polarimetric Imager (CAPI) aboard TanSat in December of that year.[9][16] CAPI imaged clouds within 670 and 1640 nanometer channels but was restricted to fixed-angle imaging. The DPC aboard Gaofen-5 enables atmospheric spectroscopy in three polarized bands (90, 670, and 865 nm; polarized at 0°, 60°, and 120°) and five non-polarized bands (443, 565, 763, 765, and 910 nm), all wavelengths from green to near-infrared (NIR). A step motor rotates the 512 × 512 pixel charge-coupled device (CCD) imager ±50° providing a 1,850 km swath of imagery at 3.3 km resolution.[9][17]

Satellites[edit]

Since the program's start in 2013, the People's Republic of China has launched 30 Gaofen-series satellites and has not yet experienced a launch failure. Jilin-1 satellites described as 'Gaofen' are not part of the government's Gaofen series, rather are described as having high resolution (Chinese: 高分; pinyin: Gāofēn).[18]

Designation Launch date
(UTC)
Payloads Orbit Orbital apsis Inclination SCN COSPAR ID Launch vehicle Launch site Status
Gaofen 1 26 April 2013 2m PAN, 8m MSI, 4x 16m WFV MSI SSO 632.8 km × 662.7 km 98.1° 39150 2013-018A Long March 2D Jiuquan SLC Operational
Gaofen 2 19 August 2014 0.8m PAN, 3.2m MSI SSO 630.5 km × 638.0 km 97.7° 40118 2014-049A Long March 4B Taiyuan SLC Operational
Gaofen 8 26 June 2015 EO SSO 501.7 km × 504.5 km 97.6° 40701 2015-030A Long March 4B Taiyuan SLC Operational
Gaofen 9-01 14 September 2015 EO SSO 624.5 km × 671.3 km 97.8° 40894 2015-047A Long March 2D Jiuquan SLC Operational
Gaofen 4 28 December 2015 50m VIS, 400m MWIR GEO 35,782.4 km × 35,806.4 km 0.1° 41194 2015-083A Long March 3B Xichang SLC Operational
Gaofen 3 9 August 2016 C-band SAR SSO 757.9 km × 758.8 km 98.4° 41727 2016-049A Long March 4C Taiyuan SLC Operational
Gaofen 1-02 31 March 2018 2m PAN, 8m MSI, 4x 16m WFV MSI SSO 645.4 km × 649.0 km 97.9° 43259 2018-031A Long March 4C Taiyuan SLC Operational
Gaofen 1-03 31 March 2018 2m PAN, 8m MSI, 4x 16m WFV MSI SSO 642.9 km × 651.9 km 97.9° 43260 2018-031B Long March 4C Taiyuan SLC Operational
Gaofen 1-04 31 March 2018 2m PAN, 8m MSI, 4x 16m WFV MSI SSO 644.3 km × 650.5 km 97.9° 43262 2018-031D Long March 4C Taiyuan SLC Operational
Gaofen 5 8 May 2018 303km POL MSI, 0.3cm HSI, 30m HSI SSO 706.2 km × 707.0 km 98.3° 43461 2018-043A Long March 4C Taiyuan SLC Operational
Gaofen 6 2 June 2018 MSI SSO 641.0 km × 654.3 km 97.9° 43484 2018-048A Long March 2D Jiuquan SLC Operational
Gaofen 11-01 31 July 2018 EO SSO 493.1 km × 512.5 km 97.6° 43585 2018-063A Long March 4B Taiyuan SLC Operational
Gaofen 10R 4 October 2019 Unknown SSO 632.0 km × 634.4 km 97.9° 44622 2019-066A Long March 4C Taiyuan SLC Operational
Gaofen 7 3 November 2019 2x 0.8m PAN, 2.5m MSI SSO 500.7 km × 517.9 km 97.4° 44703 2019-072A Long March 4B Taiyuan SLC Operational
Gaofen 12 27 November 2019 SAR SSO 634.4 km × 636.5 km 97.9° 44819 2019-082A Long March 4C Taiyuan SLC Operational
Gaofen 9-02 31 May 2020 EO SSO 493.9 km × 511.3 km 97.4° 45625 2020-034B Long March 2D Jiuquan SLC Operational
Gaofen 9-03 17 June 2020 EO SSO 491.5 km × 513.9 km 97.4° 45794 2020-039A Long March 2D Jiuquan SLC Operational
Gaofen DUOMO 3 July 2020 EO SSO 635.5 km × 657.6 km 97.9° 45856 2020-042A Long March 4B Taiyuan SLC Operational
Gaofen 9-04 6 August 2020 EO SSO 497.9 km × 506.4 km 94.4° 46025 2020-054A Long March 2D Jiuquan SLC Operational
Gaofen 9-05 23 August 2020 EO SSO 493.5 km × 511.9 km 97.4° 46232 2020-058A Long March 2D Jiuquan SLC Operational
Gaofen 11-02 7 September 2020 EO SSO 500.7 km × 505.2 km 97.4° 46396 2020-064A Long March 4B Taiyuan SLC Operational
Gaofen 13 11 October 2020 50m VIS, 400m MWIR GEO 35,782.5 km × 35,806.1 km 0.2° 46610 2020-071A Long March 3B Xichang SLC Operational
Gaofen 14 6 December 2020 EO SSO 492.9 km × 198.4 km 97.4° 47231 2020-092A Long March 3B/G5 Xichang SLC Operational
Gaofen 12-02 30 March 2021 SAR SSO 634.7 km × 636.6 km 97.9° 48079 2021-026A Long March 4C Jiuquan SLC Operational
Gaofen 5-02 7 September 2021 303km POL MSI, 0.3cm HSI, 30m HSI SSO 705.4 km × 710.2 km 98.2° 49122 2021-079A Long March 4C Taiyuan SLC Operational
Gaofen 11-03 20 November 2021 EO SSO 498.6 km × 504.8 km 97.4° 49492 2021-107A Long March 4B Taiyuan SLC Operational
Gaofen 3-02 22 November 2021 C-band SAR SSO 757.5 km × 759.2 km 98.4° 49495 2021-109A Long March 4C Jiuquan SLC Operational
Gaofen 3-03 6 April 2022 C-band SAR SSO 757.8 km × 758.9 km 98.4° 52200 2022-035A Long March 4C Jiuquan SLC Operational
Gaofen 12-03 27 June 2022 SAR SSO 633.3 km × 367.1 km 98.0° 52912 2022-069A Long March 4C Jiuquan SLC Operational
Gaofen 5-01A 8 December 2022 HSI SSO 706.1 km × 709.0 km 98.1° 54640 2022-165A Long March 2D Taiyuan SLC Operational
Gaofen 11-04 27 December 2022 EO SSO 498.6 km × 504.8 km 97.4° 54818 2022-176A Long March 4B Taiyuan SLC Operational
Gaofen 13-02 17 March 2023 Unknown GTO 35,788.4 km × 35,802.1 km 3.0° 55912 2023-036A Long March 3B/E Xichang SLC Operational
Gaofen 12-04 20 August 2023 SAR SSO 626 km × 630 km 97.9° 57654 2023-132A Long March 4C Jiuquan SLC Operational
Table data sourced from previously cited references, CelesTrak, N2YO, NASA, and the U.S. Space Force

See also[edit]

References[edit]

  1. ^ "China launches another Gaofen Earth observation satellite". Spaceflight Now. 8 September 2020. Archived from the original on 10 September 2020. Retrieved 9 September 2020.
  2. ^ a b c d Chen, Liangfu; Letu, Husi; Fan, Meng; Shang, Huazhe; Tao, Jinhua; Wu, Laixiong; Zhang, Ying; Yu, Chao; Gu, Jianbin; Zhang, Ning; Hong, Jin (8 April 2022). "An Introduction to the Chinese High-Resolution Earth Observation System: Gaofen-1~7 Civilian Satellites". Journal of Remote Sensing. 2022: 1–14. Bibcode:2022JRemS202269536C. doi:10.34133/2022/9769536. S2CID 247446513.
  3. ^ China High-resolution Earth Observation System (CHEOS) and its Latest Development (PDF). Earth Observation System and Data Center, CNSA. February 2014. Archived (PDF) from the original on 11 May 2022. Retrieved 4 June 2022.
  4. ^ Smid, Henk H.F. (26 September 2022). An analysis of Chinese remote sensing satellites (Report). Space Review. Archived from the original on 23 October 2022. Retrieved 23 October 2022.
  5. ^ Qi, Lu (27 December 2021). "呂琪:夜空中最亮的星—盤點中國系列衛星" [[Military Blog Review] Lv Qi: The Brightest Star in the Night Sky - Inventory of Chinese Satellites]. Lite News Hong Kong (in Chinese). Archived from the original on 4 September 2022. Retrieved 4 September 2022.
  6. ^ Zhen, Liu (12 October 2020). "China is sending more of its Gaofen satellites into space. Here's why". South China Morning Post. Archived from the original on 4 September 2022. Retrieved 4 September 2022.
  7. ^ Jones, Andrew (22 November 2021). "China launches new Gaofen-11 high resolution spy satellite to match U.S. capabilities". SpaceNews.
  8. ^ Iderawumi, Mustapha (19 August 2021). "BRICS Space Agencies Leaders Signed Agreement to Share Remote Sensing Satellite Data". Space in Africa. Archived from the original on 19 August 2021. Retrieved 19 May 2022.
  9. ^ a b c d Zhengqiang, Li; Hou, Weizhen; Hong, Jin; Zheng, Fengxun; Luo, Donggen; Wang, Jun; Gu, Xingfa; Qiao, Yanli (12 April 2018). "Directional Polarimetric Camera (DPC): Monitoring aerosol spectral optical properties over land from satellite observation" (PDF). Journal of Quantitative Spectroscopy & Radiative Transfer. 218 (218). University of Iowa, Chinese Academy of Sciences (published 7 July 2018): 22–23. Bibcode:2018JQSRT.218...21L. doi:10.1016/j.jqsrt.2018.07.003. S2CID 126349523. Archived (PDF) from the original on 23 October 2022. Retrieved 23 October 2022 – via Elsevier Science Direct.
  10. ^ a b c Liu, Yin-Nian; Sun, De-Xin; Hu, Xiao-Ning; Liu, Shu-Feng; Cao, Kai-Qin (1 June 2020). "AHSI: the Hyperspectral Imager on China's GaoFen-5 Satellite". Earth and Environmental Science. 509 (1): 012033. Bibcode:2020E&ES..509a2033L. doi:10.1088/1755-1315/509/1/012033. S2CID 225552086.
  11. ^ Hsu, Su May; Kerekes, J.P.; Berke, Hsiao-Hua; Crooks, S. (April 1999). "SAR and HSI data fusion for counter CC&D". Proceedings of the 1999 IEEE Radar Conference. Radar into the Next Millennium (Cat. No.99CH36249). pp. 218–220. doi:10.1109/NRC.1999.767320. ISBN 0-7803-4977-6. S2CID 15912558. Archived from the original on 24 October 2022. Retrieved 25 October 2022.
  12. ^ a b Ge, Xiangyu; Ding, Jianli; Teng, Dexiong; Xie, Boqiang; Zhang, Xianlong; Wang, Jinjie; Han, Lijing; Bao, Qingling; Wang, Jingzhe (1 August 2022). "Exploring the capability of Gaofen-5 hyperspectral data for assessing soil salinity risks". International Journal of Applied Earth Observation and Geoinformation. 112: 102969. doi:10.1016/j.jag.2022.102969. ISSN 1569-8432. S2CID 251557178.
  13. ^ Li, Xiaoying; Xu, Jian; Cheng, Tianhai; Shi, Hailiang; Zhang, Xingying; Ge, Shule; Wang, Hongmei; Zhu, Songyan; Miao, Jing; Luo, Qi (January 2019). "Monitoring Trace Gases over the Antarctic Using Atmospheric Infrared Ultraspectral Sounder Onboard GaoFen-5: Algorithm Description and First Retrieval Results of O3, H2O, and HCl". Remote Sensing. 11 (17): 1991. Bibcode:2019RemS...11.1991L. doi:10.3390/rs11171991. ISSN 2072-4292.
  14. ^ a b c Chen, Liangfu (13 October 2016). Mission Overview GaoFen-5 (PDF). 12th Meeting of the CEOS Atmospheric Composition Virtual Constellation (PowerPoint presentation). Seoul, Korea. Archived (PDF) from the original on 23 October 2022. Retrieved 23 October 2022.
  15. ^ Chen, L.; Tao, M.; Wang, Z. (1 December 2018). "The GaoFen-5 satellite for air pollution monitoring in China: first results and general performance". AGU Fall Meeting Abstracts. 2018: A51A–04. Bibcode:2018AGUFM.A51A..04C. Archived from the original on 23 October 2022. Retrieved 23 October 2022.
  16. ^ "TanSat". eoPortal. Archived from the original on 23 October 2022. Retrieved 23 October 2022.
  17. ^ Qie, Lili; Li, Zhengqiang; Zhu, Sifeng; Xu, Hua; Xie, Yisong; Qiao, Rui; Hong, Jun; Tu, Bihai (13 August 2021). "In-flight radiometric and polarimetric calibration of the Directional Polarimetric Camera onboard the GaoFen-5 satellite over the ocean". Applied Optics. 60 (24): 7186–7199. Bibcode:2021ApOpt..60.7186Q. doi:10.1364/AO.422980. PMID 34613006. S2CID 237688592. Archived from the original on 23 October 2022. Retrieved 23 October 2022.
  18. ^ Jones, Andrew (9 December 2022). "China launches hyperspectral Earth-imaging satellite to orbit (video)". Space.com. Archived from the original on 11 December 2022. Retrieved 11 December 2022.