Bioorthogonal marking

from Wikipedia, the free encyclopedia

The bioorthogonal labeling includes biochemical methods for the molecular marker in which a selective chemical reaction takes place to disturb possible in a cell without the biological processes. Bioorthogonal labeling is a combination of metabolic labeling and a subsequent selective response used in vivo or in vitro . The bioorthogonal labeling enables in vivo signal molecules (reporter molecules) to be coupled to the molecule to be labeled which cannot be generated by cellular reactions, e.g. B. a synthetic fluorophore .

properties

Bioorthogonal labeling is based on the use of very selective chemical reactions in which few side reactions occur in order not to react with biomolecules . A non-specific reaction can inhibit cellular processes and reactions , which can lead to toxicity and would therefore be less suitable for use in vivo , e.g. B. in cell cultures . For this purpose, in the context of metabolic labeling , cell cultures are usually fed with a culture medium that contains labeled molecules with a specific functional group . These labeled molecules are converted by the metabolism or incorporated into other molecules. The functional group can then react further with a selective chemical reaction in the context of bioorthogonal labeling. In order to avoid rapid degradation of the label, the bond created in this way should also be resistant to the metabolism and have a sufficient reaction rate .

Various reactions of bioorthogonal labeling have been described, e.g. B. the 1,3-dipolar cycloaddition of azides and cyclooctynes ​​(synonymous with copper-free click chemistry ), or between nitrones and cyclooctynes, the formation of oximes or hydrazones from aldehydes or ketones , the tetrazine ligation, the isocyanide- based click reaction , the quadricyclane ligation, the Sonogashira coupling , the copper-catalyzed alkyne-azide cycloaddition , the Heck reaction , the cyclopropene-azide coupling, the myristylation , the cyanobenzothiazole condensation or the tetrazole-alkene cycloaddition. After biosynthesis, membrane proteins can be enzymatically coupled with azides, which in turn are coupled with reporter molecules via the Staudinger reaction.

application

With a bioorthogonal marking glycans , proteins , and lipids can be marked.

history

From the year 2000 bioorthogonal labeling was carried out using the Staudinger reaction of azides with triarylphosphines. The term 'bioorthogonal marking' was coined in 2003 by Carolyn Bertozzi .

Individual evidence

  1. ^ Ellen M. Sletten, Carolyn R. Bertozzi: Bioorthogonal Chemistry: Fishing for Selectivity in a Sea of ​​Functionality . In: Angewandte Chemie International Edition . 48, No. 38, 2009, pp. 6974-6998. doi : 10.1002 / anie.200900942 . PMID 19714693 . PMC 2864149 (free full text).
  2. Jennifer A. Prescher, Danielle H. Dube, Carolyn R. Bertozzi: Chemical remodeling of cell surfaces in living animals . In: Nature . 430, No. 7002, 2004, pp. 873-877. doi : 10.1038 / nature02791 . PMID 15318217 .
  3. Jennifer A Prescher, Carolyn R Bertozzi: Chemistry in living systems . In: Nature Chemical Biology . 1, No. 1, 2005, pp. 13-21. doi : 10.1038 / nchembio0605-13 . PMID 16407987 .
  4. John C. Jewett, Carolyn R. Bertozzi: Synthesis of a fluorogenic cyclooctyne activated by Cu-free click chemistry . In: Organic Letters . 13, No. 22, 2011, pp. 5937-5939. doi : 10.1021 / ol2025026 . PMID 22029411 . PMC 3219546 (free full text).
  5. ^ EM Sletten, CR Bertozzi: Bioorthogonal chemistry: fishing for selectivity in a sea of ​​functionality. In: Angewandte Chemie (International ed. In English). Volume 48, number 38, 2009, pp. 6974-6998, doi: 10.1002 / anie.200900942 . PMID 19714693 . PMC 2864149 (free full text).
  6. ^ RK Lim, Q. Lin: Bioorthogonal chemistry: recent progress and future directions. In: Chemical communications. Volume 46, Number 10, March 2010, pp. 1589-1600, doi: 10.1039 / b925931g . PMID 20177591 . PMC 2914230 (free full text).
  7. Y. Takaoka, A. Ojida, I. Hamachi: protein organic chemistry and applications for labeling and engineering in live-cell system. In: Angewandte Chemie (International ed. In English). Volume 52, number 15, April 2013, pp. 4088-4106, doi: 10.1002 / anie.201207089 , PMID 23426903 .
  8. JM Baskin, JA Prescher, ST Laughlin, NJ Agard, PV Chang, IA Miller, A. Lo, JA Codelli: Copper-free click chemistry for dynamic in vivo imaging . In: Proceedings of the National Academy of Sciences . 104, No. 43, 2007, pp. 16793-7. doi : 10.1073 / pnas.0707090104 . PMID 17942682 . PMC 2040404 (free full text).
  9. ^ T. Plass, S. Milles, C. Koehler, C. Schultz, EA Lemke: Genetically encoded copper-free click chemistry. In: Angewandte Chemie (International ed. In English). Volume 50, number 17, April 2011, pp. 3878-3881, doi: 10.1002 / anie.201008178 . PMID 21433234 . PMC 3210829 (free full text).
  10. K. Lang, L. Davis, S. Wallace, M. Mahesh, DJ Cox, ML Blackman, JM Fox, JW Chin: Genetic Encoding of bicyclononynes and trans-cyclooctenes for site-specific protein labeling in vitro and in live mammalian cells via rapid fluorogenic Diels-Alder reactions. In: Journal of the American Chemical Society . Volume 134, number 25, June 2012, pp. 10317-10320, doi: 10.1021 / ja302832g . PMID 22694658 . PMC 3687367 (free full text).
  11. Jump up Xinghai Ning, Rinske P. Temming, Jan Dommerholt, Jun Guo, Daniel Blanco-Ania, Marjoke F. Debets, Margreet A. Wolfert, Geert-Jan Boons: Protein Modification by Strain-Promoted Alkyne-Nitrone Cycloaddition . In: Angewandte Chemie International Edition . 49, No. 17, 2010, p. 3065. doi : 10.1002 / anie.201000408 .
  12. KJ Yarema, LK Mahal, RE Bruehl, EC Rodriguez, CR Bertozzi: Metabolic Delivery of Ketone Groups to Sialic Acid Residues. APPLICATION TO CELL SURFACE GLYCOFORM ENGINEERING . In: Journal of Biological Chemistry . 273, No. 47, 1998, pp. 31168-31179. doi : 10.1074 / jbc.273.47.31168 . PMID 9813021 .
  13. L. Wang, Z. Zhang, A. Brock, PG Schultz: Addition of the keto functional group to the genetic code of Escherichia coli. In: Proceedings of the National Academy of Sciences . Volume 100, Number 1, January 2003, pp. 56-61, doi: 10.1073 / pnas.0234824100 . PMID 12518054 . PMC 140882 (free full text).
  14. S. Voss, L. Zhao, X. Chen, F. Gerhard, YW Wu: Generation of an intramolecular three-color fluorescence resonance energy transfer probe by site-specific protein labeling. In: Journal of Peptide Science [electronic publication before print] January 2014, doi: 10.1002 / psc.2590 , PMID 24395760 .
  15. Melissa L. Blackman, Maksim Royzen, Joseph M. Fox: The Tetrazine Ligation: Fast Bioconjugation based on Inverse-electron-Demand Diels-Alder Reactivity . In: Journal of the American Chemical Society . 130, No. 41, 2008, pp. 13518-13519. doi : 10.1021 / ja8053805 . PMID 18798613 . PMC 2653060 (free full text).
  16. JL Seitchik, JC Peeler, MT Taylor, ML Blackman, TW Rhoads, RB Cooley, C. Refakis, JM Fox, RA Mehl: Genetically encoded tetrazine amino acid directs rapid site-specific in vivo bioorthogonal ligation with trans-cyclooctenes. In: Journal of the American Chemical Society. Volume 134, number 6, February 2012, pp. 2898-2901, doi: 10.1021 / ja2109745 . PMID 22283158 . PMC 3369569 (free full text).
  17. ^ Henning Stöckmann, André A. Neves, Shaun Stairs, Kevin M. Brindle, Finian J. Leeper: Exploring isonitrile-based click chemistry for ligation with biomolecules . In: Organic & Biomolecular Chemistry . tape 9 , no. 21 , October 12, 2011, p. 7303-7305 , doi : 10.1039 / C1OB06424J .
  18. Ellen M. Sletten, Carolyn R. Bertozzi: A Bioorthogonal Quadricyclane Ligation . In: Journal of the American Chemical Society . 133, No. 44, 2011, pp. 17570-17573. doi : 10.1021 / ja2072934 . PMID 21962173 . PMC 3206493 (free full text).
  19. J. Li, S. Lin, J. Wang, S. Jia, M. Yang, Z. Hao, X. Zhang, PR Chen: Ligand-free palladium-mediated site-specific protein labeling inside gram-negative bacterial pathogens. In: Journal of the American Chemical Society. Volume 135, number 19, May 2013, pp. 7330-7338, doi: 10.1021 / ja402424j , PMID 23641876 .
  20. Jump up ↑ Ilya A. Osterman, Alexey V. Ustinov, Denis V. Evdokimov, Vladimir A. Korshun, Petr V. Sergiev, Marina V. Serebryakova, Irina A. Demina, Maria A. Galyamina, Vadim M. Govorun, Olga A. Dontsova : A nascent proteome study combining click chemistry with 2DE Archived from the original on June 30, 2015. Info: The archive link has been inserted automatically and has not yet been checked. Please check the original and archive link according to the instructions and then remove this notice. In: Proteomics . 13, No. 1, January 2013, pp. 17-21. doi : 10.1002 / pmic.201200393 . PMID 23161590 . Retrieved June 27, 2015. @1@ 2Template: Webachiv / IABot / www.cyandye.com
  21. C. Uttamapinant, MI Sanchez, DS Liu, JZ Yao, AY Ting: Site-specific protein labeling using PRIME and chelation-assisted click chemistry. In: Nature protocols. Volume 8, number 8, August 2013, pp. 1620–1634, doi: 10.1038 / nprot.2013.096 , PMID 23887180 .
  22. ^ F. Truong, TH Yoo, TJ Lampo, DA Tirrell: Two-strain, cell-selective protein labeling in mixed bacterial cultures. In: Journal of the American Chemical Society. Volume 134, number 20, May 2012, pp. 8551-8556, doi: 10.1021 / ja3004667 , PMID 22575034 , PMC 3443257 (free full text).
  23. ME Ourailidou, JY van der Meer, BJ Baas, M. Jeronimus-Stratingh, AL Gottumukkala, GJ Poelarends, AJ Minnaard, FJ Dekker: Aqueous oxidative heck reaction as a protein-labeling strategy. In: ChemBioChem Volume 15, Number 2, January 2014, pp. 209-212, doi: 10.1002 / cbic.201300714 , PMID 24376051 .
  24. Z. Yu, Y. Pan, Z. Wang, J. Wang, Q. Lin: Genetically encoded cyclopropene directs rapid, photoclick-chemistry-mediated protein labeling in mammalian cells. In: Angewandte Chemie (International ed. In English). Volume 51, number 42, October 2012, pp. 10600-10604, doi: 10.1002 / anie.201205352 , PMID 22997015 , PMC 3517012 (free full text).
  25. ^ WP Heal, MH Wright, E. Thinon, EW Tate: Multifunctional protein labeling via enzymatic N-terminal tagging and elaboration by click chemistry. In: Nature protocols. Volume 7, number 1, January 2012, pp. 105-117, doi: 10.1038 / nprot.2011.425 , PMID 22193303 .
  26. DP Nguyen, T. Elliott, M. Holt, TW Muir, JW Chin: Genetically encoded 1,2-aminothiols facilitate rapid and site-specific protein labeling via a bio-orthogonal cyanobenzothiazole condensation. In: Journal of the American Chemical Society. Volume 133, Number 30, August 2011, pp. 11418-11421, doi: 10.1021 / ja203111c , PMID 21736333 .
  27. ^ RK Lim, Q. Lin: Photoinducible bioorthogonal chemistry: a spatiotemporally controllable tool to visualize and perturb proteins in live cells. In: Accounts of chemical research. Volume 44, number 9, September 2011, pp. 828-839, doi: 10.1021 / ar200021p , PMID 21609129 , PMC 3175026 (free full text).
  28. ^ GC Rudolf, W. Heydenreuter, SA Sieber: Chemical proteomics: ligation and cleavage of protein modifications. In: Current opinion in chemical biology. Volume 17, number 1, February 2013, pp. 110-117, doi: 10.1016 / j.cbpa.2012.11.007 , PMID 23273612 .
  29. J. Wang, W. Zhang, W. Song, Y. Wang, Z. Yu, J. Li, M. Wu, L. Wang, J. Zang, Q. Lin: A biosynthetic route to photoclick chemistry on proteins. In: Journal of the American Chemical Society. Volume 132, Number 42, October 2010, pp. 14812-14818, doi: 10.1021 / ja104350y . PMID 20919707 . PMC 2965590 (free full text).
  30. M. Fernández-Suárez, H. Baruah, L. Martínez-Hernández, KT Xie, JM Baskin, CR Bertozzi, AY Ting: Redirecting lipoic acid ligase for cell surface protein labeling with small-molecule probes. In: Nature Biotechnology . Volume 25, number 12, December 2007, pp. 1483-1487, doi: 10.1038 / nbt1355 , PMID 18059260 , PMC 2654346 (free full text).
  31. ^ Tilman Plass, Sigrid Milles, Christine Koehler, Carsten Schultz, Edward A. Lemke: Genetically Encoded Copper-Free Click Chemistry . In: Angewandte Chemie International Edition . 50, No. 17, 2011, p. 3878. doi : 10.1002 / anie.201008178 .
  32. ^ Anne B. Neef, Carsten Schultz: Selective Fluorescence Labeling of Lipids in Living Cells . In: Angewandte Chemie International Edition . 48, No. 8, 2009, pp. 1498-1500. doi : 10.1002 / anie.200805507 . PMID 19145623 .
  33. ^ E. Saxon, CR Bertozzi: Cell Surface Engineering by a Modified Staudinger Reaction . In: Science . 287, No. 5460, 2000, pp. 2007-2010. doi : 10.1126 / science.287.5460.2007 . PMID 10720325 .
  34. Ellen M. Sletten, Carolyn R. Bertozzi: From Mechanism to Mouse: A Tale of Two Bioorthogonal Reactions . In: Accounts of Chemical Research . tape 44 , no. 9 , September 20, 2011, p. 666-676 , doi : 10.1021 / ar200148z .