Copper-zinc-tin sulfide

from Wikipedia, the free encyclopedia
Crystal structure
Crystal structure of CZTS
__ Cu 2+ __ Zn 2+ __ Sn 4+ __ S 2−
General
Surname Copper-zinc-tin sulfide
other names
  • Kesterite (mineral)
  • CZTS
Ratio formula Cu 2 ZnSnS 4
External identifiers / databases
CAS number 12158-89-3
Wikidata Q424930
properties
Molar mass 439.5 g mol −1
Physical state

firmly

Melting point

990 ° C

safety instructions
GHS hazard labeling
no classification available
As far as possible and customary, SI units are used. Unless otherwise noted, the data given apply to standard conditions .

Copper-zinc-tin sulfide (abbreviated CZTS from English copper, zinc, tin, sulfur ) is a semiconducting compound of copper , zinc , tin and sulfur . Due to its suitable optoelectronic properties, it is being researched for use in thin-film solar cells . This material is particularly interesting as a possible alternative to conventional thin-film technologies such as CdTe or CIGS , which are based on rare or toxic elements.

properties

CZTS crystallizes like stannite (Cu 2 FeSnS 4 ) and kesterite (Cu 2 (Zn, Fe) SnS 4 ) in the tetragonal crystal system with the space group I 4 (space group no.82 ) and the lattice parameters a = 0.5427 nm and c = 1.0871 nm. In this form, the material has a direct band transition with a band gap energy of 1.4-1.5 eV. Template: room group / 82

use

The physical properties suitable for solar cells (size of the band gap, absorption) result, among other things, as an electrically active layer in thin-film solar cells (cf. photovoltaics ). CZTS layers can be deposited using various coating processes, for example sputter deposition , thermal evaporation , laser ablation , chemical vapor deposition (CVD), or solution-based techniques. For commercial use, however, the focus is less on the band gap, which is also offered by various other materials, but rather the lack of rare elements such as indium or gallium compared to the use of CIGS .

Solar cells based on CZTS are still in the research area. Researchers at Tallinn University of Technology developed powder-based monograin membrane solar cells that also contain selenium (Se). This material, also referred to as CZTSSe, can be continuously shifted in its band gap between that of the pure sulfide (CZTS, band gap at 1.5 eV) and that of the pure selenide (CZTSe, band gap at 1.0 eV). With these solar cells, the first independently certified efficiency of CZTS solar cells was achieved in 2009 with 5.9% , which was increased to 12.6% for CZTSSe by 2013. The TUT spin-off crystalsol is developing a module production facility in Estonia and Austria on this basis . The extremely low temperature coefficient of this solar cell material, which at 0.013% / K is significantly below that of other solar cell materials, is of particular practical interest. IBM researchers achieved efficiencies of 9.6 percent for pure sulphide (CZTS) and 9.3 percent for pure selenide (CZTSe) with solar cells applied from hydrazine solutions.

Individual evidence

  1. H. Matsushita, T. Ichikawa, A. Katsui: Structural, thermodynamical and optical properties of Cu2-II-IV-VI4 quaternary compounds. In: Journal of Materials Science. Volume 40, No. 8, 2005, pp. 2003-2005, doi: 10.1007 / s10853-005-1223-5 .
  2. This substance has either not yet been classified with regard to its hazardousness or a reliable and citable source has not yet been found.
  3. H. Katagiri, M. Nishimura, T. Onozawa, S. Maruyama, M. Fujita, T. Sega, T. Watanabe: Rare-metal free thin film solar cell. In: Proceedings of the Power Conversion Conference - Nagaoka 1997. Volume 2, 1997, pp. 1003-1006 ( abstract )
  4. ^ A b c Masaya Ichimura, Yuki Nakashima: Analysis of Atomic and Electronic Structures of Cu2ZnSnS4 Based on First-Principle Calculation. In: Japanese Journal of Applied Physics. Volume 48, 2009, p. 090202, doi: 10.1143 / JJAP.48.090202 .
  5. Alfons Weber: Growth of thin layers of the material system Cu-Zn-Sn-S. (Dissertation thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, 2009, PDF , accessed on August 22, 2010).
  6. Hironori Katagiri, Kotoe Saitoh, Tsukasa Washio, Hiroyuki Shinohara, Tomomi Kurumadani, Shinsuke Miyajima: Development of thin film solar cell based on Cu2ZnSnS4 thin films . In: Solar Energy Materials and Solar Cells . tape 65 , no. 1-4 , 2001, pp. 141-148 , doi : 10.1016 / S0927-0248 (00) 00088-X .
  7. a b W. Wang, MT Winkler, O. Gunawan, T. Gokmen, TK Todorov, Y. Zhu, DB Mitzi: Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency . In: Advanced Energy Materials . tape 4 , no. 7 , 2013, p. 1301465 , doi : 10.1002 / aenm.201301465 .
  8. Enn Mellikov, Dieter Meissner, Tiit Varema, Mare Altosaar, Marit Kauk, Olga Volobujeva, Jaan Raudoja, Katri Timmo and Mati Danilson: Monograin materials for solar cells . In: Solar Energy Materials and Solar Cells . tape 93 , no. 1 , 2009, p. 65-68 , doi : 10.1016 / j.solmat.2008.04.018 .
  9. Katri Timmon, Mare Altosaar, Jaan Raudoja, Katri Muska, Maris Pilvet, Marit Kauk, Tiit Varema, Mati Danilson, Olga Volobujeva, Enn Mellikov: Sulfur-containing Cu 2 ZnSnSe 4 monograin powders for solar cells . In: Solar Energy Materials and Solar Cells . tape 94 , no. 11 , 2010, p. 1889-1892 , doi : 10.1016 / j.solmat.2010.06.046 .
  10. Maarja Grossberg, Jüri Krustok, Jaan Raudoja, Katri Timmo, Mare Altosaar, Taavi Raadik: Photoluminescence and Raman study of Cu 2 ZnSn (Se x S 1 - x ) 4 monograins for photovoltaic applications . In: Thin Solid Films . tape 519 , no. 21 , August 31, 2011, p. 7403-7406 , doi : 10.1016 / j.tsf.2010.12.099 .
  11. crystalsol reaches 5.9% conversion efficiency. crystalsol, February 2009, accessed on August 26, 2017 (English, reference under "News").
  12. Company website , accessed on August 26, 2017.
  13. Jüri Krustok, Raavo Josepson, Mati Danilson, Dieter Meissner: Temperature dependence of Cu 2 ZnSn (Se x S 1-x ) 4 monograin solar cells . In: Solar Energy . tape 84 , no. 3 , 2010, p. 379-383 , doi : 10.1016 / j.solener.2009.09.011 .
  14. Teodor K. Todorov, Kathleen B. Reuter, David B. Mitzi: High-Efficiency Solar Cell with Earth-Abundant Liquid-Processed Absorber . In: Advanced Materials . tape 22 , no. 20 , 2010, p. E156 – E159 , doi : 10.1002 / adma.200904155 .
  15. Kevin Bullis: IBM research improves solar cells. In: Heise online. February 11, 2010, accessed February 12, 2010 .

literature

  • H. Katagiri, M. Nishimura, T. Onozawa, S. Maruyama, M. Fujita, T. Sega, T. Watanabe: Rare-metal free thin film solar cell . In: Proceedings of the Power Conversion Conference - Nagaoka 1997 . tape 2 , 1997, p. 1003–1006 , doi : 10.1109 / PCCON.1997.638392 (information on the band spacing, production and grid structure).
  • R. Hoffman: Materials for CZTS Photovoltaic Devices . In: NNN REU Research Accomplishmenta . 2009, p. 82–83 ( PDF [accessed August 26, 2017]).