Orthogonal mapping

from Wikipedia, the free encyclopedia

In mathematics, an orthogonal mapping or orthogonal transformation is a mapping between two real scalar product spaces that receives the scalar product . Orthogonal mappings are always linear , injective , norm-preserving and distance- preserving . In Euclidean space , orthogonal maps can be represented by orthogonal matrices and describe congruence maps , for example rotations or reflections . The bijective orthogonal mappings of a scalar product space in themselves form a subgroup of the automorphism group of the space with the sequential execution as a link . The eigenvalues of such a mapping are not necessarily real, but they all have the complex amount one.

A bijective orthogonal mapping between two Hilbert spaces is also called an orthogonal operator . The corresponding counterparts for complex scalar product spaces are unitary maps and unitary operators . A distinction must be made between orthogonal mappings and mutually orthogonal functions, for example orthogonal polynomials , which are understood as vectors in a function space and are characterized by the fact that their scalar product is zero.


A mapping between two real inner product spaces and is called orthogonal if for all vectors

applies. An orthogonal mapping is therefore characterized in that it receives the scalar product of vectors. In particular, an orthogonal mapping maps mutually orthogonal vectors and (that is, vectors whose scalar product is zero) onto mutually orthogonal vectors and .


The identical picture

is trivially orthogonal. In Euclidean space , orthogonal mappings are straight in shape


where is an orthogonal matrix . In the space of quadratically summable real number sequences , for example, the right shift

represents an orthogonal map. Other important orthogonal mappings are integral transformations of the form

with a suitably chosen integral core . Examples are the sine and cosine transformations , the Hilbert transformations and the wavelet transformations . The orthogonality of such transformations follows from Plancherel's theorem and its variants.


In the following, the additions to the scalar products are omitted, since the argument makes it clear which space is involved.


An orthogonal map is linear , that is, for all vectors and numbers applies


This is because it applies because of the bilinearity and the symmetry of the scalar product

such as

The additivity and the homogeneity of the mapping then follow from the positive definiteness of the scalar product.


The kernel of an orthogonal map contains only the zero vector because for holds

and it then follows from the positive definiteness of the scalar product . An orthogonal mapping is therefore always injective . If and are finite-dimensional with the same dimension, then, based on the ranking , applies

and thus is also surjective and therefore bijective . However, orthogonal mappings between infinite-dimensional spaces need not necessarily be surjective; an example of this is the right shift.

Standard maintenance

An orthogonal mapping receives the scalar product norm of a vector, that is


because it applies


Conversely, every linear mapping between two real scalar product spaces that contains the scalar product norm is orthogonal. On the one hand, it applies because of the bilinearity and the symmetry of the scalar product

and with the linearity of the mapping on the other hand

By equating the two equations, the orthogonality of the mapping follows.


Due to the maintenance of the standard and the linearity, an orthogonal mapping also contains the distance between two vectors, because the metric induced by the standard applies


An orthogonal mapping thus represents an isometry . Conversely, every mapping (a priori not necessarily linear) between two scalar product spaces that contains distances and maps the zero vector onto the zero vector is orthogonal. Namely, such a mapping is due to

maintaining norms and then follows from the polarization formula

and thus the orthogonality. If there is a bijective orthogonal mapping between two scalar product spaces, then the two spaces are isometrically isomorphic . A bijective orthogonal mapping between two Hilbert spaces is also called an orthogonal operator .

Orthogonal endomorphisms

Group properties

An orthogonal mapping represents an endomorphism . The execution of two orthogonal endomorphisms one behind the other is again orthogonal because it applies


If an orthogonal endomorphism is bijective, then its inverse is due to

also orthogonal. The bijective orthogonal endomorphisms of form a subgroup of the automorphism group . If the space is finite dimensional with the dimension , then this group is isomorphic to the orthogonal group .


The eigenvalues ​​of an orthogonal map are not necessarily all real. However, if there is an eigenvalue of (understood as a complex mapping) with an associated eigenvector , then the following applies

and with it . The eigenvalues ​​of an orthogonal mapping therefore all have the complex amount one and are accordingly of the form

with . An orthogonal mapping therefore has at most the real eigenvalues . The complex eigenvalues ​​always appear complex conjugated in pairs , because with is due to

also an eigenvalue of .

Mapping matrix

The mapping matrix of an orthogonal mapping with respect to an orthonormal basis of is always orthogonal , that is to say


because it applies


where and are.

See also


  • Ina Kersten: Analytical Geometry and Linear Algebra . tape 1 . Universitätsverlag Göttingen, 2005, ISBN 978-3-938616-26-0 .
  • Hans-Joachim Kowalsky, Gerhard O. Michler: Lineare Algebra . de Gruyter, 2003, ISBN 978-3-11-017963-7 .
  • Dietlinde Lau: Algebra and Discrete Mathematics . tape 1 . Springer, 2011, ISBN 978-3-642-19443-6 .

Web links