The Hotelling's T-square distribution is a probability distribution that was first described by Harold Hotelling in 1931 . It is a generalization of the Student's t-distribution .
definition
Hotelling's T-square distribution is defined as
t
2
=
n
(
x
-
μ
)
′
W.
-
1
(
x
-
μ
)
{\ displaystyle t ^ {2} = n ({\ mathbf {x}} - {\ mathbf {\ mu}}) '{\ mathbf {W}} ^ {- 1} ({\ mathbf {x}} - {\ mathbf {\ mu}})}
With
n
{\ displaystyle n}
a number of points
x
{\ displaystyle {\ mathbf {x}}}
is a column vector with elements
p
{\ displaystyle p}
W.
{\ displaystyle {\ mathbf {W}}}
is a - covariance matrix .
p
×
p
{\ displaystyle p \ times p}
properties
Let it be a random variable with a multivariate normal distribution and (independent of ) have a Wishart distribution with a non-singular variance matrix and with . Then, the distribution is : , Hotelling's T-squared distribution with parameters and .
x
∼
N
p
(
μ
,
V
)
{\ displaystyle x \ sim N_ {p} (\ mu, {\ mathbf {V}})}
W.
∼
W.
p
(
m
,
V
)
{\ displaystyle {\ mathbf {W}} \ sim W_ {p} (m, {\ mathbf {V}})}
x
{\ displaystyle x}
V
{\ displaystyle \ mathbf {V}}
m
=
n
-
1
{\ displaystyle m = n-1}
t
2
{\ displaystyle t ^ {2}}
T
2
(
p
,
m
)
{\ displaystyle T ^ {2} (p, m)}
p
{\ displaystyle p}
m
{\ displaystyle m}
F.
{\ displaystyle F}
be the F-distribution . Then it can be shown that:
m
-
p
+
1
p
m
T
2
∼
F.
p
,
m
-
p
+
1
{\ displaystyle {\ frac {m-p + 1} {pm}} T ^ {2} \ sim F_ {p, m-p + 1}}
.
Assuming that
x
1
,
...
,
x
n
{\ displaystyle {\ mathbf {x}} _ {1}, \ dots, {\ mathbf {x}} _ {n}}
p
×
1
{\ displaystyle p \ times 1}
Are column vectors with real numbers.
x
¯
=
(
x
1
+
⋯
+
x
n
)
/
n
{\ displaystyle {\ overline {\ mathbf {x}}} = (\ mathbf {x} _ {1} + \ cdots + \ mathbf {x} _ {n}) / n}
be the mean. The positive definite matrix
p
×
p
{\ displaystyle p \ times p}
W.
=
∑
i
=
1
n
(
x
i
-
x
¯
)
(
x
i
-
x
¯
)
′
/
(
n
-
1
)
{\ displaystyle {\ mathbf {W}} = \ sum _ {i = 1} ^ {n} (\ mathbf {x} _ {i} - {\ overline {\ mathbf {x}}}) (\ mathbf { x} _ {i} - {\ overline {\ mathbf {x}}}) '/ (n-1)}
be your “sample variance” matrix. (The transpose of a matrix is denoted by). Let be a column vector (if used an estimator of the mean). Then the Hotellings T-squared distribution
M.
{\ displaystyle M}
M.
′
{\ displaystyle M '}
μ
{\ displaystyle \ mu}
p
×
1
{\ displaystyle p \ times 1}
t
2
=
n
(
x
¯
-
μ
)
′
W.
-
1
(
x
¯
-
μ
)
.
{\ displaystyle t ^ {2} = n ({\ overline {\ mathbf {x}}} - {\ mathbf {\ mu}}) '{\ mathbf {W}} ^ {- 1} ({\ overline { \ mathbf {x}}} - {\ mathbf {\ mu}}).}
t
2
{\ displaystyle t ^ {2}}
has a close relationship with the squared Mahalanobis distance .
In particular, it can be shown that if are independent and and are as defined above, then Wishart has a distribution with degrees of freedom such that
x
1
,
...
,
x
n
∼
N
p
(
μ
,
V
)
{\ displaystyle {\ mathbf {x}} _ {1}, \ dots, {\ mathbf {x}} _ {n} \ sim N_ {p} (\ mu, {\ mathbf {V}})}
x
¯
{\ displaystyle {\ overline {\ mathbf {x}}}}
W.
{\ displaystyle {\ mathbf {W}}}
W.
{\ displaystyle {\ mathbf {W}}}
n
-
1
{\ displaystyle n-1}
W.
∼
W.
p
(
V
,
n
-
1
)
{\ displaystyle \ mathbf {W} \ sim W_ {p} (V, n-1)}
and is independent of and
x
¯
{\ displaystyle {\ overline {\ mathbf {x}}}}
x
¯
∼
N
p
(
μ
,
V
/
n
)
{\ displaystyle {\ overline {\ mathbf {x}}} \ sim N_ {p} (\ mu, V / n)}
.
It follows
t
2
=
n
(
x
¯
-
μ
)
′
W.
-
1
(
x
¯
-
μ
)
∼
T
2
(
p
,
n
-
1
)
.
{\ displaystyle t ^ {2} = n ({\ overline {\ mathbf {x}}} - {\ mathbf {\ mu}}) '{\ mathbf {W}} ^ {- 1} ({\ overline { \ mathbf {x}}} - {\ mathbf {\ mu}}) \ sim T ^ {2} (p, n-1).}
Individual evidence
^ H. Hotelling (1931). The generalization of student's ratio, Ann. Math. Statist., 2 (3), pp. 360-378, doi : 10.1214 / aoms / 1177732979 JSTOR 2957535 .
^ KV Mardia, JT Kent, and JM Bibby (1979) Multivariate Analysis , Academic Press, ISBN 0-12-471250-9 .
Discrete univariate distributions
Continuous univariate distributions
Multivariate distributions
<img src="https://de.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">