Deuterostome: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
No edit summary
(40 intermediate revisions by 12 users not shown)
Line 3: Line 3:
{{Automatic taxobox
{{Automatic taxobox
| name = Deuterostomes
| name = Deuterostomes
| fossil_range = Earliest [[Cambrian]] [[Holocene|Present]] {{Geological range|538.8|0}}
| fossil_range = Earliest [[Cambrian]]–[[Holocene|Present]] {{fossil range|540|0|earliest=555|}}
(Possible [[Ediacaran]] record, 555 Ma<ref>{{Cite journal|last1=Fedonkin|first1=M. A.|last2=Vickers-Rich|first2=P.|last3=Swalla|first3=B. J.|last4=Trusler|first4=P.|last5=Hall|first5=M.|title=A new metazoan from the Vendian of the White Sea, Russia, with possible affinities to the ascidians|journal=Paleontological Journal|volume=46|pages=1–11|year=2012|issue=1 |doi=10.1134/S0031030112010042|bibcode=2012PalJ...46....1F |s2cid=128415270}}</ref>)
| image = Deuterostomia.jpg
| image = Deuterostomia.jpg
| image_caption = Examples of deuterostomes
| image_caption = Diversity of deuterostomes
| display_parents = 4
| display_parents = 3
| taxon = Deuterostomia
| taxon = Deuterostomia
| authority = [[Karl Grobben|Grobben]], 1908
| authority = [[Karl Grobben|Grobben]], 1908
| subdivision_ranks = Clades
| subdivision_ranks = Clades
| subdivision = *[[Chordata]]
| subdivision = *[[Chordata]]
*[[Vetulicolia]] [[extinction|†]]<ref>{{Cite journal|last1=Han|first1=Jian|last2=Morris|first2=Simon Conway |author2-link=Simon Conway Morris |last3=Ou|first3=Qiang|last4=Shu |first4=Degan|last5=Huang|first5=Hai|title=Meiofaunal deuterostomes from the basal Cambrian of Shaanxi (China)|journal=Nature |volume=542|issue=7640 |pages=228–231 |doi=10.1038/nature21072|pmid=28135722|year=2017 |bibcode=2017Natur.542..228H|s2cid=353780}}</ref>
*[[Saccorhytus|Saccorhytida]]? [[extinction|†]]
*[[Vetulicolia]][[extinction|†]]<ref>{{Cite journal|last1=Han|first1=Jian|last2=Morris|first2=Simon Conway |author2-link=Simon Conway Morris |last3=Ou|first3=Qiang|last4=Shu |first4=Degan|last5=Huang|first5=Hai|title=Meiofaunal deuterostomes from the basal Cambrian of Shaanxi (China)|journal=Nature |volume=542|issue=7640 |pages=228–231 |doi=10.1038/nature21072|pmid=28135722|year=2017 |bibcode=2017Natur.542..228H|s2cid=353780}}</ref>
*[[Ambulacraria]]
*[[Ambulacraria]]
**[[Hemichordata]]
**[[Hemichordata]]
**[[Echinodermata]]
**[[Echinodermata]]
**[[Cambroernida]]†
**[[Cambroernida]] [[Extinction|]]
}}
}}
'''Deuterostomes''' (from [[Ancient Greek|Greek]]: {{lit|second mouth}}) are [[bilaterian]] [[animal]]s of the [[superphylum]] '''Deuterostomia''' ({{IPAc-en|ˌ|dj|uː|t|ər|ə|ˈ|s|t|oʊ|m|i|.|ə}}),<ref name="NYT-20170130">{{cite news |last=Wade |first=Nicholas |title=This Prehistoric Human Ancestor Was All Mouth |url=https://www.nytimes.com/2017/01/30/science/this-prehistoric-human-ancestor-was-all-mouth.html |date=30 January 2017 |work=[[The New York Times]] |access-date=31 January 2017}}</ref><ref name="NAT-20170130">{{cite journal|last1=Han|first1=Jian|last2=Morris|first2=Simon Conway|last3=Ou|first3=Qiang|last4=Shu|first4=Degan|last5=Huang|first5=Hai|title=Meiofaunal deuterostomes from the basal Cambrian of Shaanxi (China)|journal=Nature|volume=542|issue=7640|pages=228–231|year=2017|issn=0028-0836|doi=10.1038/nature21072|pmid=28135722|bibcode=2017Natur.542..228H|s2cid=353780}}</ref> typically characterized by their [[anus]] forming before the [[mouth]] during [[embryogenesis|embryonic development]]. The three major [[clade]]s of extant deuterostomes include [[chordate]]s ([[vertebrate]]s, [[lancelet]]s, [[sea squirt]]s, [[salp]]s and [[larvacean]]s), [[echinoderm]]s ([[sea star]]s, [[brittle star]]s, [[sea urchin]]s, [[sea cucumber]]s and [[sea lilies]]) and [[hemichordate]]s ([[acorn worm]]s).
'''Deuterostomes''' (from [[Ancient Greek|Greek]]: {{lit|mouth second}}) are [[bilaterian]] [[animal]]s of the [[superphylum]] '''Deuterostomia''' ({{IPAc-en|ˌ|dj|uː|t|ər|ə|ˈ|s|t|oʊ|m|i|.|ə}}),<ref name="NYT-20170130">{{cite news |last=Wade |first=Nicholas |title=This Prehistoric Human Ancestor Was All Mouth |url=https://www.nytimes.com/2017/01/30/science/this-prehistoric-human-ancestor-was-all-mouth.html |date=30 January 2017 |work=[[The New York Times]] |access-date=31 January 2017}}</ref><ref name="NAT-20170130">{{cite journal|last1=Han|first1=Jian|last2=Morris|first2=Simon Conway|last3=Ou|first3=Qiang|last4=Shu|first4=Degan|last5=Huang|first5=Hai|title=Meiofaunal deuterostomes from the basal Cambrian of Shaanxi (China)|journal=Nature|volume=542|issue=7640|pages=228–231|year=2017|issn=0028-0836|doi=10.1038/nature21072|pmid=28135722|bibcode=2017Natur.542..228H|s2cid=353780}}</ref> typically characterized by their [[anus]] forming before the [[mouth]] during [[embryogenesis|embryonic development]]. Deuterostomia is further divided into 4 [[Phylum|phyla]]: [[chordate|Chordata]], [[echinoderm|Echinodermata]], [[hemichordate|Hemichordata]], and the extinct [[Vetulicolia]] known from [[Cambrian]] fossils. The extinct [[clade]] [[Cambroernid|Cambroernida]] is also thought to be a member of Deuterostomia.


In deuterostomy, the developing embryo's first opening (the [[blastopore]]) becomes the anus and [[cloaca]], while the mouth is formed at a different site later on. This was initially the group's distinguishing characteristic, but deuterostomy has since been discovered among [[protostome]]s as well.<ref>{{cite journal |doi=10.1038/s41559-016-0005 |pmid=28812551 |title=The developmental basis for the recurrent evolution of deuterostomy and protostomy |journal=Nature Ecology & Evolution |volume=1 |issue=1 |pages=0005 |year=2016 |last1=Martín-Durán |first1=José M. |last2=Passamaneck |first2=Yale J. |last3=Martindale |first3=Mark Q. |last4=Hejnol |first4=Andreas|s2cid=90795 |url=https://qmro.qmul.ac.uk/xmlui/handle/123456789/54816 }}</ref> This group is also known as '''enterocoelomates''', because their [[coelom]] develops through [[enterocoely]].
In deuterostomy, the developing embryo's first opening (the [[blastopore]]) becomes the anus and [[cloaca]], while the mouth is formed at a different site later on. This was initially the group's distinguishing characteristic, but deuterostomy has since been discovered among [[protostome]]s as well.<ref>{{cite journal |doi=10.1038/s41559-016-0005 |pmid=28812551 |title=The developmental basis for the recurrent evolution of deuterostomy and protostomy |journal=Nature Ecology & Evolution |volume=1 |issue=1 |pages=0005 |year=2016 |last1=Martín-Durán |first1=José M. |last2=Passamaneck |first2=Yale J. |last3=Martindale |first3=Mark Q. |last4=Hejnol |first4=Andreas|s2cid=90795 |url=https://qmro.qmul.ac.uk/xmlui/handle/123456789/54816 }}</ref> This group is also known as '''enterocoelomates''', because their [[coelom]] develops through [[enterocoely]].


Deuterostomia's sister clade is [[Protostomia]], animals that develop mouth first and whose [[digestive tract]] development is more varied, which include [[ecdysozoan]]s ([[panarthropod]]s, [[Nematoida|nematoid]]s, [[penis worm]]s, [[mud dragon]]s etc.) and [[spiralian]]s ([[mollusk]]s, [[annelid]]s, [[flatworm]]s, [[rotifer]]s, [[arrow worm]]s, etc.) as well as the extinct ''[[Kimberella]]''. Together with Protostomia and their [[outgroup (cladistics)|outgroup]] [[Xenacoelomorpha]], they constitute the large [[infrakingdom]] [[Bilateria]], i.e. animals with [[bilateral symmetry]] and three [[germ layer]]s.
Deuterostomia's sister clade is [[Protostomia]], animals that develop mouth first and whose [[digestive tract]] development is more varied. Protostomia includes the [[ecdysozoan]]s ([[panarthropod]]s, [[Nematoida|nematoid]]s, [[penis worm]]s, [[mud dragon]]s etc.) and [[spiralian]]s ([[mollusk]]s, [[annelid]]s, [[flatworm]]s, [[rotifer]]s, [[arrow worm]]s, etc.), as well as the extinct ''[[Kimberella]]''. Together with Protostomia and their [[outgroup (cladistics)|outgroup]] [[Xenacoelomorpha]], they constitute the large [[infrakingdom]] [[Bilateria]], i.e. animals with [[bilateral symmetry]] and three [[germ layer]]s.


==Systematics==
==Systematics==
===History===
===History===
Initially, Deuterostomia included the phyla [[Brachiopod]]a,<ref name="Eernisse1992">{{Cite journal|last1=Eernisse|first1=Douglas J.|last2=Albert|first2=James S.|last3=Anderson|first3=Frank E.|date=1992-09-01|title=Annelida and Arthropoda are Not Sister Taxa: A Phylogenetic Analysis of Spiralian Metazoan Morphology|url=https://academic.oup.com/sysbio/article/41/3/305/1676076|journal=Systematic Biology|language=en|volume=41|issue=3|pages=305–330|doi=10.1093/sysbio/41.3.305|issn=1063-5157}}</ref> [[Bryozoa]],<ref name="Nielsen2002">{{cite journal |last=Nielsen |first=C. |date=July 2002 |title=The Phylogenetic Position of Entoprocta, Ectoprocta, Phoronida, and Brachiopoda |journal=Integrative and Comparative Biology |volume=42 |issue=3 |pages=685–691 |doi=10.1093/icb/42.3.685 |pmid=21708765 |doi-access=free }}</ref> [[Chaetognatha]],<ref name=Brusca1990>{{cite book |author1=Brusca, R.C. |author2=Brusca, G.J. |year=1990 |title=Invertebrates |url=https://archive.org/details/invertebrates0000brus |url-access=registration |publisher=Sinauer Associates |page=[https://archive.org/details/invertebrates0000brus/page/669 669]}}</ref> and [[Phoronida]]<ref name="Eernisse1992"/> based on morphological and embryological characteristics. However, ''Superphylum Deuterostomia'' was redefined in 1995 based on DNA molecular sequence analyses when the [[lophophorate]]s were removed from it and combined with other protostome animals to form superphylum [[Lophotrochozoa]].<ref>{{cite journal |author= Halanych, K.M. |author2= Bacheller, J. |author3= Liva, S. |author4= Aguinaldo, A. A. |author5= Hillis, D.M. |author6= Lake, J.A. |name-list-style= amp |date= 17 March 1995 |title= 18S rDNA evidence that the Lophophorates are Protostome Animals |journal= Science |volume= 267 |pages= 1641–1643 |bibcode= 1995Sci...267.1641H |doi= 10.1126/science.7886451 |pmid=7886451 |issue= 5204|s2cid= 12196991 }}</ref> The phylum [[Chaetognatha]] (arrow worms) may belong here,<ref name=Brusca1990/> but molecular studies have placed them in the protostomes more often.<ref>{{Cite journal |last1=Marlétaz |first1=Ferdinand |last2=Martin |first2=Elise |last3=Perez |first3=Yvan |last4=Papillon |first4=Daniel |last5=Caubit |first5=Xavier |last6=Lowe |first6=Christopher J. |last7=Freeman |first7=Bob |last8=Fasano |first8=Laurent |last9=Dossat |first9=Carole |last10=Wincker |first10=Patrick |last11=Weissenbach |first11=Jean |date=2006-08-01 |title=Chaetognath phylogenomics: a protostome with deuterostome-like development |journal=Current Biology |language=en |volume=16 |issue=15 |pages=R577–R578 |doi=10.1016/j.cub.2006.07.016|pmid=16890510 |s2cid=18339954 |doi-access=free }}</ref><ref>{{Cite journal |last1=Marlétaz |first1=Ferdinand |last2=Peijnenburg |first2=Katja T.C.A. |last3=Goto |first3=Taichiro |last4=Satoh |first4=Noriyuki |last5=Rokhsar |first5=Daniel S. |date=2019-01-21 |title=A New Spiralian Phylogeny Places the Enigmatic Arrow Worms among Gnathiferans |journal=Current Biology |language=en |volume=29 |issue=2 |pages=312–318.e3 |doi=10.1016/j.cub.2018.11.042|pmid=30639106 |doi-access=free }}</ref> Genetic studies have also revealed that deuterostomes have more than 30 genes not found in any other animal groups, but are present in some marine algae and prokaryotes. Which could mean they are very ancient genes that were lost in other organisms, or that a common ancestor acquired them through [[horizontal gene transfer]].<ref>[https://news.berkeley.edu/2015/11/19/acorn-worm-genome-reveals-gill-origins-of-human-pharynx/ Acorn worm genome reveals gill origins of human pharynx | Berkeley News]</ref>
Initially, Deuterostomia included the phyla [[Brachiopod]]a,<ref name="Eernisse1992">{{Cite journal|last1=Eernisse|first1=Douglas J.|last2=Albert|first2=James S.|last3=Anderson|first3=Frank E.|date=1992-09-01|title=Annelida and Arthropoda are Not Sister Taxa: A Phylogenetic Analysis of Spiralian Metazoan Morphology|url=https://academic.oup.com/sysbio/article/41/3/305/1676076|journal=Systematic Biology|language=en|volume=41|issue=3|pages=305–330|doi=10.1093/sysbio/41.3.305|issn=1063-5157}}</ref> [[Bryozoa]],<ref name="Nielsen2002">{{cite journal |last=Nielsen |first=C. |date=July 2002 |title=The Phylogenetic Position of Entoprocta, Ectoprocta, Phoronida, and Brachiopoda |journal=Integrative and Comparative Biology |volume=42 |issue=3 |pages=685–691 |doi=10.1093/icb/42.3.685 |pmid=21708765 |doi-access=free }}</ref> [[Chaetognatha]],<ref name=Brusca1990>{{cite book |author1=Brusca, R.C. |author2=Brusca, G.J. |year=1990 |title=Invertebrates |url=https://archive.org/details/invertebrates0000brus |url-access=registration |publisher=Sinauer Associates |page=[https://archive.org/details/invertebrates0000brus/page/669 669]}}</ref> and [[Phoronida]]<ref name="Eernisse1992"/> based on morphological and embryological characteristics. However, Deuterostomia was redefined in 1995 based on DNA molecular sequence analyses, leading to the removal of the [[lophophorate]]s which was later combined with other protostome animals to form the superphylum [[Lophotrochozoa]].<ref>{{cite journal |author= Halanych, K.M. |author2= Bacheller, J. |author3= Liva, S. |author4= Aguinaldo, A. A. |author5= Hillis, D.M. |author6= Lake, J.A. |name-list-style= amp |date= 17 March 1995 |title= 18S rDNA evidence that the Lophophorates are Protostome Animals |journal= Science |volume= 267 |pages= 1641–1643 |bibcode= 1995Sci...267.1641H |doi= 10.1126/science.7886451 |pmid=7886451 |issue= 5204|s2cid= 12196991 }}</ref> The [[Chaetognatha|arrow worms]] may also be deuterostomes,<ref name=Brusca1990/> but molecular studies have placed them in the protostomes more often.<ref>{{Cite journal |last1=Marlétaz |first1=Ferdinand |last2=Martin |first2=Elise |last3=Perez |first3=Yvan |last4=Papillon |first4=Daniel |last5=Caubit |first5=Xavier |last6=Lowe |first6=Christopher J. |last7=Freeman |first7=Bob |last8=Fasano |first8=Laurent |last9=Dossat |first9=Carole |last10=Wincker |first10=Patrick |last11=Weissenbach |first11=Jean |date=2006-08-01 |title=Chaetognath phylogenomics: a protostome with deuterostome-like development |journal=Current Biology |language=en |volume=16 |issue=15 |pages=R577–R578 |doi=10.1016/j.cub.2006.07.016|pmid=16890510 |s2cid=18339954 |doi-access=free }}</ref><ref>{{Cite journal |last1=Marlétaz |first1=Ferdinand |last2=Peijnenburg |first2=Katja T.C.A. |last3=Goto |first3=Taichiro |last4=Satoh |first4=Noriyuki |last5=Rokhsar |first5=Daniel S. |date=2019-01-21 |title=A New Spiralian Phylogeny Places the Enigmatic Arrow Worms among Gnathiferans |journal=Current Biology |language=en |volume=29 |issue=2 |pages=312–318.e3 |doi=10.1016/j.cub.2018.11.042|pmid=30639106 |doi-access=free }}</ref> Genetic studies have also revealed that deuterostomes have more than 30 genes not found in any other animal groups, but which yet are present in some marine algae and prokaryotes. This could mean they are very ancient genes that were lost in other organisms, or that a common ancestor acquired them through [[horizontal gene transfer]].<ref>[https://news.berkeley.edu/2015/11/19/acorn-worm-genome-reveals-gill-origins-of-human-pharynx/ Acorn worm genome reveals gill origins of human pharynx | Berkeley News]</ref>


While protostomes as a monophyletic group has strong support, research have shown that deuterostomes may be paraphyletic, and what was once considered traits of deuterostomes could instead be traits of the last common bilaterian ancestor. This suggests the deuterostome branch is very short or non-existent. The Xenambulacraria's sister group could be both the chordates or the protostomes, or be equally distantly related to them both.<ref name="kapli">{{Cite journal|title=Lack of support for Deuterostomia prompts reinterpretation of the first Bilateria|first1=Paschalia|last1=Kapli|first2=Paschalis|last2=Natsidis|first3=Daniel J.|last3=Leite|first4=Maximilian|last4=Fursman|first5=Nadia|last5=Jeffrie|first6=Imran A.|last6=Rahman|first7=Hervé|last7=Philippe|first8=Richard R.|last8=Copley|first9=Maximilian J.|last9=Telford|date=March 1, 2021|journal=Science Advances|volume=7|issue=12|pages=eabe2741|doi=10.1126/sciadv.abe2741|pmid=33741592|pmc=7978419|bibcode=2021SciA....7.2741K}}</ref>
While protostomes as a monophyletic group has strong support, research has shown that deuterostomes may be paraphyletic, and what was once considered traits of deuterostomes could instead be traits of the last common bilaterian ancestor. This suggests the deuterostome branch is very short or non-existent. The Xenambulacraria's sister group could be both the chordates or the protostomes, or be equally distantly related to them both.<ref name="kapli">{{Cite journal|title=Lack of support for Deuterostomia prompts reinterpretation of the first Bilateria|first1=Paschalia|last1=Kapli|first2=Paschalis|last2=Natsidis|first3=Daniel J.|last3=Leite|first4=Maximilian|last4=Fursman|first5=Nadia|last5=Jeffrie|first6=Imran A.|last6=Rahman|first7=Hervé|last7=Philippe|first8=Richard R.|last8=Copley|first9=Maximilian J.|last9=Telford|date=March 1, 2021|journal=Science Advances|volume=7|issue=12|pages=eabe2741|doi=10.1126/sciadv.abe2741|pmid=33741592|pmc=7978419|bibcode=2021SciA....7.2741K}}</ref>


===Classification===
===Classification===
{{See also|List of bilateral animal orders}}
{{See also|List of bilateral animal orders}}
These are the following phyla/subgroups of the deuterostomes:
This is the generally agreed upon [[Phylogenetic tree|phylogeny]] of the deuterostomes:
*Superphylum Deuterostomia
*Superphylum Deuterostomia
**Phylum [[Chordata]] ([[vertebrate]]s, [[tunicate]]s, and [[lancelet]]s)
**Phylum [[Chordata]]
***Subphylum [[Cephalochordata]] – 1 class ([[lancelet]]s)
***Subphylum [[Cephalochordata]] ([[lancelet]]s)
***''Clade'' [[Olfactores]]
***Subphylum [[Tunicata]] ([[Urochordata]]) – 4 classes ([[tunicate]]s)
****Subphylum [[Tunicata]] (tunicates)
***Subphylum [[Vertebrata]] ([[Craniata]]) – 9 classes ([[vertebrate]]s – [[mammal]]s, [[reptile]]s, [[amphibian]]s, [[bird]]s, and [[fish]])
****Subphylum [[Vertebrata]]
****Superclass [[Agnatha]] ([[Cyclostomata]] or [[incertae sedis]]) – 2 classes ([[jawless fish]] – [[hagfish]] and [[lamprey]]s)
*****Superclass [[Agnatha]] (jawless fish)
****Infraphylum [[Gnathostomata]] – 7 classes ([[jawed vertebrates]] – [[mammal]]s, [[reptile]]s, [[amphibian]]s, [[bird]]s, [[bony fish]], and [[cartilaginous fish]])
*****Infraphylum [[Gnathostomata]] (jawed fish)
*****Superclass [[Chondrichthyes]] – 1 class ([[cartilaginous fish]] – [[shark]]s, [[skates (fish)|skate]]s, [[ray (fish)|ray]]s, and [[chimaera]]s)
******Class [[Chondrichthyes]] (cartilaginous fish)
*****Superclass [[Osteichthyes]] – 2 classes ([[bony fish]], 98.8 percent of all [[fish]] – [[ray-finned fish]] and [[lobe-finned fish]])
*****Superclass [[Tetrapoda]] 4 classes ([[Tetrapod|four-limbed vertebrate]]s – [[mammal]]s, [[reptile]]s, [[amphibian]]s, and [[bird]]s)
******Superclass [[Osteichthyes]] (bony fish - includes [[Tetrapod|tetrapods]])
**''Clade'' [[Ambulacraria]]
**Phylum [[Hemichordata]] – 3 classes ([[hemichordate]]s, known as [[acorn worm]]s)
***Phylum [[Hemichordata]]
**Phylum [[Echinodermata]] ([[echinoderm]]s – [[sea star]]s, [[brittle star]]s, [[sea lily|sea lilies]], [[sea urchin]]s, and [[sea cucumber]]s)
****Class [[Planctosphaeroidea]]
***Subphylum [[Asterozoa]] – 2 classes ([[sea star]]s and [[brittle star]]s)
****Class [[Acorn worm|Enteropneusta]] (acorn worms)
***Subphylum [[Crinozoa]] – 1 class ([[sea lily|sea lilies]])
****Class [[Pterobranchia]]
***Subphylum [[Echinozoa]] – 2 classes ([[sea urchin]]s and [[sea cucumber]]s)
***Phylum [[Echinodermata]]
****Subphylum [[Asterozoa]]
*****Class [[Starfish|Asteroidea]] (starfish)
*****Class [[Brittle star|Ophiuroidea]] (brittle stars)
****Subphylum [[Blastozoa]] [[Extinction|†]]
****Subphylum [[Crinozoa]] ([[Crinoid|sea lillies]] and extinct relatives)
****Subphylum [[Echinozoa]]
*****[[Sea urchin|Echinoidea]] (sea urchins)
*****[[Sea cucumber|Holothuriodea]] (sea cucumbers)


Echinodermata and Hemichordata form the clade [[Ambulacraria]]. Moreover, there is a possibility that Ambulacraria can be the sister clade to [[Xenacoelomorpha]], and form the [[Xenambulacraria]] group.<ref name="Bourlat2006">{{cite journal | last1=Bourlat | first1=Sarah J. | last2=Juliusdottir | first2=Thorhildur | last3=Lowe | first3=Christopher J. | last4=Freeman | first4=Robert | last5=Aronowicz | first5=Jochanan | last6=Kirschner | first6=Mark | last7=Lander | first7=Eric S. | last8=Thorndyke | first8=Michael | last9=Nakano | first9=Hiroaki | last10=Kohn | first10=Andrea B. | last11=Heyland | first11=Andreas | last12=Moroz | first12=Leonid L. | last13=Copley | first13=Richard R. | last14=Telford | first14=Maximilian J. | title=Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida | journal=Nature | volume=444 | issue=7115 | year=2006 | pages=85–88 | issn=0028-0836 | doi=10.1038/nature05241 | pmid=17051155 | bibcode=2006Natur.444...85B| s2cid=4366885 }}</ref><ref name="Philippe2019">{{cite journal | last1=Philippe | first1=Hervé | last2=Poustka | first2=Albert J. | last3=Chiodin | first3=Marta | last4=Hoff | first4=Katharina J. | last5=Dessimoz | first5=Christophe | last6=Tomiczek | first6=Bartlomiej | last7=Schiffer | first7=Philipp H. | last8=Müller | first8=Steven | last9=Domman | first9=Daryl | last10=Horn | first10=Matthias | last11=Kuhl | first11=Heiner | last12=Timmermann | first12=Bernd | last13=Satoh | first13=Noriyuki | last14=Hikosaka-Katayama | first14=Tomoe | last15=Nakano | first15=Hiroaki | last16=Rowe | first16=Matthew L. | last17=Elphick | first17=Maurice R. | last18=Thomas-Chollier | first18=Morgane | last19=Hankeln | first19=Thomas | last20=Mertes | first20=Florian | last21=Wallberg | first21=Andreas | last22=Rast | first22=Jonathan P. | last23=Copley | first23=Richard R. | last24=Martinez | first24=Pedro | last25=Telford | first25=Maximilian J. | title=Mitigating Anticipated Effects of Systematic Errors Supports Sister-Group Relationship between Xenacoelomorpha and Ambulacraria | journal=Current Biology | volume=29 | issue=11 | year=2019 | pages=1818–1826.e6 | issn=0960-9822 | doi=10.1016/j.cub.2019.04.009 | pmid=31104936 | hdl=21.11116/0000-0004-DC4B-1| s2cid=155104811 | hdl-access=free }}</ref><ref name="Marletaz2019">{{Cite journal|last=Marlétaz|first=Ferdinand|date=2019-06-17|title=Zoology: Worming into the Origin of Bilaterians|journal=Current Biology|language=en|volume=29|issue=12|pages=R577–R579|doi=10.1016/j.cub.2019.05.006|issn=0960-9822|pmid=31211978|doi-access=free}}</ref>
There is a possibility that Ambulacraria is the sister clade to [[Xenacoelomorpha]], and could form the [[Xenambulacraria]] group.<ref name="Bourlat2006">{{cite journal | last1=Bourlat | first1=Sarah J. | last2=Juliusdottir | first2=Thorhildur | last3=Lowe | first3=Christopher J. | last4=Freeman | first4=Robert | last5=Aronowicz | first5=Jochanan | last6=Kirschner | first6=Mark | last7=Lander | first7=Eric S. | last8=Thorndyke | first8=Michael | last9=Nakano | first9=Hiroaki | last10=Kohn | first10=Andrea B. | last11=Heyland | first11=Andreas | last12=Moroz | first12=Leonid L. | last13=Copley | first13=Richard R. | last14=Telford | first14=Maximilian J. | title=Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida | journal=Nature | volume=444 | issue=7115 | year=2006 | pages=85–88 | issn=0028-0836 | doi=10.1038/nature05241 | pmid=17051155 | bibcode=2006Natur.444...85B| s2cid=4366885 }}</ref><ref name="Philippe2019">{{cite journal | last1=Philippe | first1=Hervé | last2=Poustka | first2=Albert J. | last3=Chiodin | first3=Marta | last4=Hoff | first4=Katharina J. | last5=Dessimoz | first5=Christophe | last6=Tomiczek | first6=Bartlomiej | last7=Schiffer | first7=Philipp H. | last8=Müller | first8=Steven | last9=Domman | first9=Daryl | last10=Horn | first10=Matthias | last11=Kuhl | first11=Heiner | last12=Timmermann | first12=Bernd | last13=Satoh | first13=Noriyuki | last14=Hikosaka-Katayama | first14=Tomoe | last15=Nakano | first15=Hiroaki | last16=Rowe | first16=Matthew L. | last17=Elphick | first17=Maurice R. | last18=Thomas-Chollier | first18=Morgane | last19=Hankeln | first19=Thomas | last20=Mertes | first20=Florian | last21=Wallberg | first21=Andreas | last22=Rast | first22=Jonathan P. | last23=Copley | first23=Richard R. | last24=Martinez | first24=Pedro | last25=Telford | first25=Maximilian J. | title=Mitigating Anticipated Effects of Systematic Errors Supports Sister-Group Relationship between Xenacoelomorpha and Ambulacraria | journal=Current Biology | volume=29 | issue=11 | year=2019 | pages=1818–1826.e6 | issn=0960-9822 | doi=10.1016/j.cub.2019.04.009 | pmid=31104936 | hdl=21.11116/0000-0004-DC4B-1| s2cid=155104811 | hdl-access=free }}</ref><ref name="Marletaz2019">{{Cite journal|last=Marlétaz|first=Ferdinand|date=2019-06-17|title=Zoology: Worming into the Origin of Bilaterians|journal=Current Biology|language=en|volume=29|issue=12|pages=R577–R579|doi=10.1016/j.cub.2019.05.006|issn=0960-9822|pmid=31211978|doi-access=free}}</ref>


==Notable characteristics==
==Notable characteristics==
Line 76: Line 85:
[[File:EarlyDeuterostome NT.jpg|thumb|500px]]
[[File:EarlyDeuterostome NT.jpg|thumb|500px]]


The majority of animals more complex than [[jellyfish]] and other [[Cnidarians]] are split into two groups, the [[protostome]]s and deuterostomes. Chordates (which include all the vertebrates) are deuterostomes.<ref name=Erwin20002>{{cite journal|author1=Erwin, Douglas H. |author2=Eric H. Davidson |date=1 July 2002|title=The last common bilaterian ancestor|journal=Development|volume=129|pages=3021–3032|url=http://dev.biologists.org/cgi/content/full/129/13/3021|pmid=12070079|issue=13|doi=10.1242/dev.129.13.3021 }}</ref> It seems likely that the {{ma|555|million year old}} ''[[Kimberella]]'' was a member of the protostomes.<ref name=Fedonkin2007>{{The Rise and Fall of the Ediacaran Biota |author=Fedonkin, M.A. |author2=Simonetta, A |author3=Ivantsov, A.Y. |chapter=New data on ''Kimberella'', the Vendian mollusc-like organism (White sea region, Russia): palaeoecological and evolutionary implications |pages=157–179 |doi=10.1144/SP286.12}}</ref><ref name=Butterfield2006>{{cite journal |author= Butterfield, N.J. |date= December 2006 |title= Hooking some stem-group "worms": fossil lophotrochozoans in the Burgess Shale |journal= BioEssays |volume= 28 |issue= 12 |pages= 1161–1166 |doi= 10.1002/bies.20507 |pmid= 17120226|s2cid= 29130876 }}</ref> That implies that the protostome and deuterostome lineages split some time before ''Kimberella'' appeared — at least {{ma|558}}, and hence well before the start of the Cambrian {{ma|Cambrian}},<ref name=Erwin20002/> ''i.e.'' during the later part of the [[Ediacaran]] Period (circa 635-539 Mya, around the end of global [[Marinoan glaciation]] in the late [[Neoproterozoic]]). It has been proposed that the ancestral deuterostome, before the chordate/ambulacrarian split, could have been a chordate-like animal with a terminal anus and pharyngeal openings but no gill slits, with active suspension feeding strategy.<ref name="li2023">{{cite journal |last1=Li |first1=Yujing |last2=Dunn |first2=Frances S. |last3=Murdock |first3=Duncan J.E. |last4=Guo |first4=Jin |last5=Rahman |first5=Imran A. |last6=Cong |first6=Peiyun |title=Cambrian stem-group ambulacrarians and the nature of the ancestral deuterostome |journal=Current Biology |date=May 10, 2023 |volume=33 |issue=12 |pages=2359–2366.e2 |doi=10.1016/j.cub.2023.04.048 |pmid=37167976 |doi-access=free}}</ref>
[[Bilateria]], one of the five major lineages of animals, is split into two groups; the [[protostome]]s and deuterostomes. Deuterostomes consist of chordates (which include the vertebrates) and ambulacrarians.<ref name=Erwin20002>{{cite journal|author1=Erwin, Douglas H. |author2=Eric H. Davidson |date=1 July 2002|title=The last common bilaterian ancestor|journal=Development|volume=129|pages=3021–3032|url=http://dev.biologists.org/cgi/content/full/129/13/3021|pmid=12070079|issue=13|doi=10.1242/dev.129.13.3021 }}</ref> It seems likely that the {{ma|555|million year old}} ''[[Kimberella]]'' was a member of the protostomes.<ref name=Fedonkin2007>{{The Rise and Fall of the Ediacaran Biota |author=Fedonkin, M.A. |author2=Simonetta, A |author3=Ivantsov, A.Y. |chapter=New data on ''Kimberella'', the Vendian mollusc-like organism (White sea region, Russia): palaeoecological and evolutionary implications |pages=157–179 |doi=10.1144/SP286.12}}</ref><ref name=Butterfield2006>{{cite journal |author= Butterfield, N.J. |date= December 2006 |title= Hooking some stem-group "worms": fossil lophotrochozoans in the Burgess Shale |journal= BioEssays |volume= 28 |issue= 12 |pages= 1161–1166 |doi= 10.1002/bies.20507 |pmid= 17120226|s2cid= 29130876 }}</ref> That implies that the protostome and deuterostome lineages split some time before ''Kimberella'' appeared — at least {{ma|558}}, and hence well before the start of the Cambrian {{ma|Cambrian}},<ref name=Erwin20002/> ''i.e.'' during the later part of the [[Ediacaran]] Period (circa 635-539 Mya, around the end of global [[Marinoan glaciation]] in the late [[Neoproterozoic]]). It has been proposed that the ancestral deuterostome, before the chordate/ambulacrarian split, could have been a chordate-like animal with a terminal anus and pharyngeal openings but no gill slits, with active suspension feeding strategy.<ref name="li2023">{{cite journal |last1=Li |first1=Yujing |last2=Dunn |first2=Frances S. |last3=Murdock |first3=Duncan J.E. |last4=Guo |first4=Jin |last5=Rahman |first5=Imran A. |last6=Cong |first6=Peiyun |title=Cambrian stem-group ambulacrarians and the nature of the ancestral deuterostome |journal=Current Biology |date=May 10, 2023 |volume=33 |issue=12 |pages=2359–2366.e2 |doi=10.1016/j.cub.2023.04.048 |pmid=37167976 |doi-access=free}}</ref>

The last common ancestor of the deuterostomes had lost all [[innexin]] diversity.<ref>[https://elifesciences.org/articles/74422 Connexins evolved after early chordates lost innexin diversity]</ref>


Fossils of one major deuterostome group, the [[echinoderm]]s (whose modern members include [[sea star]]s, [[sea urchin]]s and [[crinoid]]s), are quite common from the start of Series 2 of the Cambrian, {{ma|521}}.<ref name="Bengtson2004">{{cite journal |author= Bengtson, S. |editor1=Lipps, J.H. |editor2=Waggoner, B.M. |title=''Early Skeletal Fossils'' in Neoproterozoic–Cambrian Biological Revolutions |year= 2004 |journal= Paleontological Society Papers |volume= 10 |pages= 67–78 |url= http://www.nrm.se/download/18.4e32c81078a8d9249800021554/Bengtson2004ESF.pdf|doi=10.1017/S1089332600002345 }}</ref> The Mid [[Cambrian]] fossil ''[[Rhabdotubus johanssoni]]'' has been interpreted as a [[pterobranch]] hemichordate.<ref>{{cite journal|author1=Bengtson, S. |author2=Urbanek, A. |date=October 2007 |title=''Rhabdotubus'', a Middle Cambrian rhabdopleurid hemichordate |journal=Lethaia |volume=19 |issue=4 |pages=293–308 |doi=10.1111/j.1502-3931.1986.tb00743.x }}</ref> Opinions differ about whether the [[Chengjiang fauna]] fossil ''[[Yunnanozoon]]'', from the earlier Cambrian, was a hemichordate or chordate.<ref name="ChenHangLi1996">{{cite journal |author=Shu, D. |author2=Zhang, X. |author3=Chen, L. |name-list-style=amp |date=April 1996 |title= Reinterpretation of Yunnanozoon as the earliest known hemichordate |journal=Nature |volume=380 |pages=428–430 |doi=10.1038/380428a0|issue=6573 |bibcode= 1996Natur.380..428S|s2cid=4368647 }}</ref><ref name="ChenHangLi1999">{{cite journal|author1=Chen, J-Y. |author2=Hang, D-Y. |author3=Li, C.W. |name-list-style=amp |title=An early Cambrian craniate-like chordate |journal=Nature |pages=518–522 |date=December 1999 |doi=10.1038/990080 |volume=402 |issue=6761 |bibcode=1999Natur.402..518C|s2cid=24895681 }}</ref> Another Chengjiang fossil, ''[[Haikouella lanceolata]]'', is interpreted as a chordate and possibly a craniate, as it shows signs of a heart, arteries, gill filaments, a tail, a neural chord with a brain at the front end, and possibly eyes — although it also had short tentacles round its mouth.<ref name="ChenHangLi1999"/> ''[[Haikouichthys]]'' and ''[[Myllokunmingia]]'', also from the Chengjiang fauna, are regarded as [[fish]].<ref>{{cite journal|author1=Shu, D.-G. |author2=Conway Morris, S. |author2-link=Simon Conway Morris |author3=Han, J. |name-list-style=amp |title=Head and backbone of the Early Cambrian vertebrate ''Haikouichthys'' |journal=Nature |volume=421 |issue=6922 |pages=526–529 |date=January 2003 |pmid=12556891 |doi=10.1038/nature01264 |bibcode=2003Natur.421..526S |s2cid=4401274 |display-authors=etal}}</ref><ref>{{cite journal |author1=Shu, D.-G. |author2=Conway Morris, S. |author2-link=Simon Conway Morris |author3=Zhang, X.-L. |name-list-style=amp |title=Lower Cambrian vertebrates from south China |journal=Nature |volume=402 |date=November 1999 |doi=10.1038/46965 |pages=42–46 |issue=6757 |bibcode=1999Natur.402...42S|s2cid=4402854 }}</ref> ''[[Pikaia]]'', discovered much earlier but from the Mid Cambrian [[Burgess Shale]], is also regarded as a primitive chordate.<ref>{{cite journal |author1=Shu, D.-G. |author2=Conway Morris, S. |author3=Zhang, X.-L. |name-list-style=amp |title=A ''Pikaia''-like chordate from the Lower Cambrian of China |journal=Nature |volume=384 |pages= 157–158 |date=November 1996 |doi=10.1038/384157a0 |issue=6605 |bibcode= 1996Natur.384..157S|s2cid=4234408 }}</ref>
Fossils of one major deuterostome group, the [[echinoderm]]s (whose modern members include [[sea star]]s, [[sea urchin]]s and [[crinoid]]s), are quite common from the start of Series 2 of the Cambrian, {{ma|521}}.<ref name="Bengtson2004">{{cite journal |author= Bengtson, S. |editor1=Lipps, J.H. |editor2=Waggoner, B.M. |title=''Early Skeletal Fossils'' in Neoproterozoic–Cambrian Biological Revolutions |year= 2004 |journal= Paleontological Society Papers |volume= 10 |pages= 67–78 |url= http://www.nrm.se/download/18.4e32c81078a8d9249800021554/Bengtson2004ESF.pdf|doi=10.1017/S1089332600002345 }}</ref> The Mid [[Cambrian]] fossil ''[[Rhabdotubus johanssoni]]'' has been interpreted as a [[pterobranch]] hemichordate.<ref>{{cite journal|author1=Bengtson, S. |author2=Urbanek, A. |date=October 2007 |title=''Rhabdotubus'', a Middle Cambrian rhabdopleurid hemichordate |journal=Lethaia |volume=19 |issue=4 |pages=293–308 |doi=10.1111/j.1502-3931.1986.tb00743.x }}</ref> Opinions differ about whether the [[Chengjiang fauna]] fossil ''[[Yunnanozoon]]'', from the earlier Cambrian, was a hemichordate or chordate.<ref name="ChenHangLi1996">{{cite journal |author=Shu, D. |author2=Zhang, X. |author3=Chen, L. |name-list-style=amp |date=April 1996 |title= Reinterpretation of Yunnanozoon as the earliest known hemichordate |journal=Nature |volume=380 |pages=428–430 |doi=10.1038/380428a0|issue=6573 |bibcode= 1996Natur.380..428S|s2cid=4368647 }}</ref><ref name="ChenHangLi1999">{{cite journal|author1=Chen, J-Y. |author2=Hang, D-Y. |author3=Li, C.W. |name-list-style=amp |title=An early Cambrian craniate-like chordate |journal=Nature |pages=518–522 |date=December 1999 |doi=10.1038/990080 |volume=402 |issue=6761 |bibcode=1999Natur.402..518C|s2cid=24895681 }}</ref> Another Chengjiang fossil, ''[[Haikouella lanceolata]]'', is interpreted as a chordate and possibly a craniate, as it shows signs of a heart, arteries, gill filaments, a tail, a neural chord with a brain at the front end, and possibly eyes — although it also had short tentacles round its mouth.<ref name="ChenHangLi1999"/> ''[[Haikouichthys]]'' and ''[[Myllokunmingia]]'', also from the Chengjiang fauna, are regarded as [[fish]].<ref>{{cite journal|author1=Shu, D.-G. |author2=Conway Morris, S. |author2-link=Simon Conway Morris |author3=Han, J. |name-list-style=amp |title=Head and backbone of the Early Cambrian vertebrate ''Haikouichthys'' |journal=Nature |volume=421 |issue=6922 |pages=526–529 |date=January 2003 |pmid=12556891 |doi=10.1038/nature01264 |bibcode=2003Natur.421..526S |s2cid=4401274 |display-authors=etal}}</ref><ref>{{cite journal |author1=Shu, D.-G. |author2=Conway Morris, S. |author2-link=Simon Conway Morris |author3=Zhang, X.-L. |name-list-style=amp |title=Lower Cambrian vertebrates from south China |journal=Nature |volume=402 |date=November 1999 |doi=10.1038/46965 |pages=42–46 |issue=6757 |bibcode=1999Natur.402...42S|s2cid=4402854 }}</ref> ''[[Pikaia]]'', discovered much earlier but from the Mid Cambrian [[Burgess Shale]], is also regarded as a primitive chordate.<ref>{{cite journal |author1=Shu, D.-G. |author2=Conway Morris, S. |author3=Zhang, X.-L. |name-list-style=amp |title=A ''Pikaia''-like chordate from the Lower Cambrian of China |journal=Nature |volume=384 |pages= 157–158 |date=November 1996 |doi=10.1038/384157a0 |issue=6605 |bibcode= 1996Natur.384..157S|s2cid=4234408 }}</ref>
Line 84: Line 95:
===Phylogeny===
===Phylogeny===
Below is a [[phylogenetic tree]] showing consensus relationships among deuterostome taxa. Phylogenomic evidence suggests the enteropneust family, [[Torquaratoridae]], fall within the [[Ptychoderidae]]. The tree is based on 16S +18S rRNA sequence data and phylogenomic studies from multiple sources.<ref>{{cite journal |last1=Tassia |first1=Michael G. |last2=Cannon |first2=Johanna T. |last3=Konikoff |first3=Charlotte E. |last4=Shenkar |first4=Noa |last5=Halanych |first5=Kenneth M. |last6=Swalla |first6=Billie J. |date=2016-10-04 |title=The Global Diversity of Hemichordata |journal=PLOS ONE |volume=11 |issue=10 |pages=e0162564 |doi=10.1371/journal.pone.0162564 |pmid=27701429 |pmc=5049775|bibcode=2016PLoSO..1162564T|doi-access=free }}</ref><ref name="kapli"/> The approximate dates for each radiation into a new clade are given in millions of years ago (Mya). Not all dates are consistent, as of date ranges only the center is given.<ref>{{cite journal |last1=Han |first1=Jian |last2=Morris |first2=Simon Conway |author2-link=Simon Conway Morris |last3=Ou |first3=Qian |last4=Shu|first4=Degan|last5=Huang|first5=Hai |title=Meiofaunal deuterostomes from the basal Cambrian of Shaanxi (China) |journal=Nature |date=2017 |volume=542|issue=7640 |pages=228–231 |doi=10.1038/nature21072|pmid=28135722 |bibcode=2017Natur.542..228H|s2cid=353780 }}</ref>
Below is a [[phylogenetic tree]] showing consensus relationships among deuterostome taxa. Phylogenomic evidence suggests the enteropneust family, [[Torquaratoridae]], fall within the [[Ptychoderidae]]. The tree is based on 16S +18S rRNA sequence data and phylogenomic studies from multiple sources.<ref>{{cite journal |last1=Tassia |first1=Michael G. |last2=Cannon |first2=Johanna T. |last3=Konikoff |first3=Charlotte E. |last4=Shenkar |first4=Noa |last5=Halanych |first5=Kenneth M. |last6=Swalla |first6=Billie J. |date=2016-10-04 |title=The Global Diversity of Hemichordata |journal=PLOS ONE |volume=11 |issue=10 |pages=e0162564 |doi=10.1371/journal.pone.0162564 |pmid=27701429 |pmc=5049775|bibcode=2016PLoSO..1162564T|doi-access=free }}</ref><ref name="kapli"/> The approximate dates for each radiation into a new clade are given in millions of years ago (Mya). Not all dates are consistent, as of date ranges only the center is given.<ref>{{cite journal |last1=Han |first1=Jian |last2=Morris |first2=Simon Conway |author2-link=Simon Conway Morris |last3=Ou |first3=Qian |last4=Shu|first4=Degan|last5=Huang|first5=Hai |title=Meiofaunal deuterostomes from the basal Cambrian of Shaanxi (China) |journal=Nature |date=2017 |volume=542|issue=7640 |pages=228–231 |doi=10.1038/nature21072|pmid=28135722 |bibcode=2017Natur.542..228H|s2cid=353780 }}</ref>



{{clade |style=font-size:85%;line-height:85%
{{clade |style=font-size:85%;line-height:85%
|label1=[[Bilateria]] |sublabel1=575 mya
|label1=[[Bilateria]]
|1={{clade
|1={{clade
|label1='''Deuterostomia'''
|label1=[[Nephrozoa]]
|1={{clade
|1={{clade
|label1=[[Chordata]]
|label1='''Deuterostomia'''
|1={{clade
|1={{clade
|label1=[[Chordata]]
|1=[[Cephalochordata]] [[File:Branchiostoma lanceolatum (Pallas, 1774).jpg|80 px]]
|label2=[[Olfactores]]
|2={{clade
|1=[[Tunicates]] [[File:Tunicate komodo.jpg|60 px]]
|2=[[Vertebrate|Vertebrata]]/[[Craniate|Craniata]] [[File:Common carp (white background).jpg|60 px]] <span style="{{MirrorH}}">[[File:Deinosuchus riograndensis.png|80px]]</span>
}}
}}
|label2=[[Xenambulacraria]]
|2={{clade
|label1=[[Xenacoelomorpha]]
|1={{clade
|1=[[Xenoturbellida]] [[File:Xenoturbella japonica.jpg|70 px]]
|label2=[[Acoelomorpha]]
|2={{clade
|1=[[Nemertodermatida]]
|2=[[Acoela]] [[File:Proporus sp.png|60 px]]
}}
}}

|label2=[[Ambulacraria]] |sublabel2=526 mya
|2={{clade
|label1=[[Echinodermata]]
|1={{clade
|1={{clade
|1=[[Crinoidea]] [[File:Crinoid on the reef of Batu Moncho Island.JPG|50 px]]
|1=[[Cephalochordata]] [[File:202208 Japanese lancelet.svg|45 px]]
|label2=[[Olfactores]]
|2={{clade
|2={{clade
|1={{clade
|1=[[Tunicata]] [[File:202210 Vase tunicates.svg|30 px]]
|1=[[Asteroidea]] [[File:Portugal 20140812-DSC01434 (21371237591).jpg|60 px]]
|label2=[[Vertebrate|Vertebrata]]
|2=[[Ophiuroidea]] [[File:Ophiura ophiura.jpg|60 px]]
|sublabel2=518 mya
}}
|2={{clade
|2={{clade
|1=[[Echinoidea]] [[File:S. variolaris.jpg|60 px]]
|1=[[Cyclostomi]] [[File:Petromyzon_marinus.jpg|100px]]
|2=[[Holothuroidea]] [[File:Holothuroidea.JPG|60 px]]
|label2=[[Gnathostomata]]
|sublabel2=440 mya
|2={{clade
|1=[[Chondrichthyes]] [[File:White_shark_(Duane_Raver).png|70px]]
|label2=[[Osteichthyes]]
|sublabel2=425 mya
|2={{clade
|1=[[Actinopterygii]] [[File:Bluefin-big.jpg|60px]]
|2=[[Sarcopterygii]] [[File:Protopterus_dolloi_Boulenger2.jpg|60px]]
}}
}}
}}
}}
}}
}}
}}
}}
|label2=[[Hemichordata]]
|label2=[[Ambulacraria]]
|sublabel2=533 mya
|2={{clade
|2={{clade
|label1=[[Pterobranchia]]
|label1=[[Echinodermata]]
|1={{clade
|1={{clade
|1=[[Cephalodiscidae]] [[File:Cephalodiscus dodecalophus McIntosh.png|50 px]]
|1=[[Crinoidea]] [[File:Crinoid-MCG 1219-P4150562-white.jpg|60 px]]
|2=[[Rhabdopleuridae]] [[File:Rhabdopleura normani Sedgwick.png|30px]]
|2={{clade
|label1=[[Asterozoa]]
|sublabel1=488 mya
|1={{clade
|1=[[Asteroidea]] [[File:Asterias rubens 233614003.jpg|60 px]]
|2=[[Ophiuroidea]] [[File:Ophiura ophiura.jpg|60 px]]
}}
|label2=[[Echinozoa]]
|2={{clade
|1=[[Echinoidea]] [[File:Zeeegel3.jpg|50 px]]
|2=[[Holothuroidea]] [[File:Isostichopus cuscus, brown sea cucumber underside.jpg|60 px]]
}}
}}
}}
}}
|label2=[[Enteropneusta]]
|label2=[[Hemichordata]]
|sublabel2=509 mya
|2={{clade
|2={{clade
|1=[[Harrimaniidae]]
|label1=[[Pterobranchia]]
|1={{clade
|1=[[Cephalodiscidae]] [[File:Cephalodiscus dodecalophus McIntosh.png|50 px]]
|2=[[Rhabdopleuridae]] [[File:Rhabdopleura normani Sedgwick.png|30px]]
}}
|label2=[[Enteropneusta]]
|2={{clade
|2={{clade
|1=[[Spengelidae]]
|1=[[Harrimaniidae]] [[File:Saccoglossus kowalevskii by Spengel 1893.png|40 px]]
|label2=[[Ptychoderidae]]
|2={{clade
|2={{clade
|1=[[Spengelidae]]
|1=[[File:Saccoglossus kowalevskii by Spengel 1893.png|50 px]]
|2=[[Torquaratoridae]]
|2=[[Ptychoderidae]] [[File:Balanoglossus_gigas.jpg|70px]]
|3=[[Torquaratoridae]]
}}
}}
}}
}}
Line 148: Line 168:
}}
}}
}}
}}
}}}}
|label2=[[Protostomia]]
|2={{clade
|label2=[[Protostomia]] |sublabel2=550 mya
|2={{clade
|1={{clade
|1=[[Ecdysozoa]] [[File:Long nosed weevil edit.jpg|60 px]]
|1=[[Ecdysozoa]] [[File:Long nosed weevil edit.jpg|60 px]]
|2=[[Spiralia]] [[File:Grapevinesnail 01.jpg|60 px]]
|2=[[Spiralia]] [[File:Grapevinesnail 01.jpg|60 px]]
|3=[[Kimberella]] († 555 mya) [[File:Kimberella NT.jpg|60 px]]
|3=[[Kimberella]] († 555 mya) [[File:Kimberella NT.jpg|60 px]]
}}
}}
}}
}}
|2=[[Xenacoelomorpha]] [[File:Neochildia_fusca.jpg|50px]]
}}
}}
}}
}}


Support for the clade Deuterostomia is not unequivocal. In particular, the Ambulacraria appear to be related to the Xenacoelomorpha. If upheld, this raises two possibilities: either the Ambulacraria are taken out of the deuterostome-protostome dichotomy (in which case the grouping Deuterostomia dissolves, with Chordata and Protostomia grouped together as [[Centroneuralia]]), or the Xenacoelomorpha are re-positioned next to Ambulacraria within the Deuterostomia as in the above diagram.<ref name="kapli" /><ref>{{Cite journal|last1=Philippe|first1=Hervé|last2=Poustka|first2=Albert J.|last3=Chiodin|first3=Marta|last4=Hoff|first4=Katharina J.|last5=Dessimoz|first5=Christophe|last6=Tomiczek|first6=Bartlomiej|last7=Schiffer|first7=Philipp H.|last8=Müller|first8=Steven|last9=Domman|first9=Daryl|last10=Horn|first10=Matthias|last11=Kuhl|first11=Heiner|date=2019-06-03|title=Mitigating Anticipated Effects of Systematic Errors Supports Sister-Group Relationship between Xenacoelomorpha and Ambulacraria|journal=Current Biology|language=en|volume=29|issue=11|pages=1818–1826.e6|doi=10.1016/j.cub.2019.04.009|issn=0960-9822|pmid=31104936|doi-access=free|hdl=21.11116/0000-0004-DC4B-1|hdl-access=free}}</ref><ref>{{Cite journal|last1=Robertson|first1=Helen E.|last2=Lapraz|first2=François|last3=Egger|first3=Bernhard|last4=Telford|first4=Maximilian J.|last5=Schiffer|first5=Philipp H.|date=2017-05-12|title=The mitochondrial genomes of the acoelomorph worms Paratomella rubra, Isodiametra pulchra and Archaphanostoma ylvae|url= |journal=Scientific Reports|language=en|volume=7|issue=1|pages=1847|doi=10.1038/s41598-017-01608-4|issn=2045-2322|pmc=5431833|pmid=28500313|bibcode=2017NatSR...7.1847R}}</ref><ref>{{Cite journal|last1=Philippe|first1=Hervé|last2=Brinkmann|first2=Henner|last3=Copley|first3=Richard R.|last4=Moroz|first4=Leonid L.|last5=Nakano|first5=Hiroaki|last6=Poustka|first6=Albert J.|last7=Wallberg|first7=Andreas|last8=Peterson|first8=Kevin J.|last9=Telford|first9=Maximilian J.|date=2011-02-10|title=Acoelomorph flatworms are deuterostomes related to Xenoturbella|url= |journal=Nature|language=en|volume=470|issue=7333|pages=255–258|doi=10.1038/nature09676|issn=0028-0836|pmc=4025995|pmid=21307940|bibcode=2011Natur.470..255P}}</ref><ref>{{cite journal
Support for the clade Deuterostomia is not unequivocal. In particular, the Ambulacraria are sometimes shown to be related to the Xenacoelomorpha. If true, this raises two possibilities: either the Ambulacraria are taken out of the deuterostome-protostome dichotomy (in which case the grouping Deuterostomia dissolves, with Chordata and Protostomia grouped together as [[Centroneuralia]]), or the Xenacoelomorpha are re-positioned next to Ambulacraria within the Deuterostomia as in the above diagram.<ref name="kapli" /><ref>{{Cite journal|last1=Philippe|first1=Hervé|last2=Poustka|first2=Albert J.|last3=Chiodin|first3=Marta|last4=Hoff|first4=Katharina J.|last5=Dessimoz|first5=Christophe|last6=Tomiczek|first6=Bartlomiej|last7=Schiffer|first7=Philipp H.|last8=Müller|first8=Steven|last9=Domman|first9=Daryl|last10=Horn|first10=Matthias|last11=Kuhl|first11=Heiner|date=2019-06-03|title=Mitigating Anticipated Effects of Systematic Errors Supports Sister-Group Relationship between Xenacoelomorpha and Ambulacraria|journal=Current Biology|language=en|volume=29|issue=11|pages=1818–1826.e6|doi=10.1016/j.cub.2019.04.009|issn=0960-9822|pmid=31104936|doi-access=free|hdl=21.11116/0000-0004-DC4B-1|hdl-access=free}}</ref><ref>{{Cite journal|last1=Robertson|first1=Helen E.|last2=Lapraz|first2=François|last3=Egger|first3=Bernhard|last4=Telford|first4=Maximilian J.|last5=Schiffer|first5=Philipp H.|date=2017-05-12|title=The mitochondrial genomes of the acoelomorph worms Paratomella rubra, Isodiametra pulchra and Archaphanostoma ylvae|url= |journal=Scientific Reports|language=en|volume=7|issue=1|pages=1847|doi=10.1038/s41598-017-01608-4|issn=2045-2322|pmc=5431833|pmid=28500313|bibcode=2017NatSR...7.1847R}}</ref><ref>{{Cite journal|last1=Philippe|first1=Hervé|last2=Brinkmann|first2=Henner|last3=Copley|first3=Richard R.|last4=Moroz|first4=Leonid L.|last5=Nakano|first5=Hiroaki|last6=Poustka|first6=Albert J.|last7=Wallberg|first7=Andreas|last8=Peterson|first8=Kevin J.|last9=Telford|first9=Maximilian J.|date=2011-02-10|title=Acoelomorph flatworms are deuterostomes related to Xenoturbella|url= |journal=Nature|language=en|volume=470|issue=7333|pages=255–258|doi=10.1038/nature09676|issn=0028-0836|pmc=4025995|pmid=21307940|bibcode=2011Natur.470..255P}}</ref><ref>{{cite journal
|first1=Gregory D. |last1=Edgecombe
|first1=Gregory D. |last1=Edgecombe
|first2=Gonzalo |last2=Giribet
|first2=Gonzalo |last2=Giribet
Line 221: Line 244:
}}</ref>
}}</ref>


==See also==
===Fossil record===
Deuterostomes have a rich fossil record with thousands of fossil species being found throughout the [[Phanerozoic]]. The earliest undisputed deuterostomes are forms such as the early chordate ''[[Pikaia]]'' and the early echinoderm ''[[Gogia]]'', each from about 515 million years ago. There are also a few earlier fossils that may represent deuterostomes, but these remain debated. The earliest of these disputed fossils are the [[tunicate]]-like organisms ''[[Finkoella]]'' and ''[[Ausia fenestrata|Ausia]]'' from the [[Ediacaran]] period. While these may in fact be tunicates, others have interpreted them as [[cnidarian]]s<ref>{{cite journal |last1=Hahn |first1=G |last2=Pflug |first2=H. D |title=Polypenartige Organismen aus dem Jung-Präkambrium (Nama-Gruppe) von Namibia |journal=Pascal-Francis |date=1985 |url=http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8373330 |access-date=13 March 2024}}</ref> or [[sponge]]s,<ref name=Fedonkin_1996>M. A. Fedonkin (1996). "Ausia as an ancestor of archeocyathans, and other sponge-like organisms". In: ''Enigmatic Organisms in Phylogeny and Evolution. Abstracts''. Moscow, Paleontological Institute, Russian Academy of Sciences, p. 90-91.</ref> and as such their true affinity remains uncertain.
{{Portal|Evolutionary biology}}
*{{annotated link|Timeline of the evolutionary history of life}}

* [[Urbilaterian]], a hypothethical common ancestor to Protostomes and Deuterostomes


==References==
==References==

Revision as of 16:29, 25 April 2024

Deuterostomes
Temporal range: Earliest CambrianPresent (Possible Ediacaran record, 555 Ma[1])
Diversity of deuterostomes
Scientific classification Edit this classification
Domain: Eukaryota
Kingdom: Animalia
Clade: ParaHoxozoa
Clade: Bilateria
Clade: Nephrozoa
Superphylum: Deuterostomia
Grobben, 1908
Clades

Deuterostomes (from Greek: lit.'mouth second') are bilaterian animals of the superphylum Deuterostomia (/ˌdjtərəˈstmi.ə/),[3][4] typically characterized by their anus forming before the mouth during embryonic development. Deuterostomia is further divided into 4 phyla: Chordata, Echinodermata, Hemichordata, and the extinct Vetulicolia known from Cambrian fossils. The extinct clade Cambroernida is also thought to be a member of Deuterostomia.

In deuterostomy, the developing embryo's first opening (the blastopore) becomes the anus and cloaca, while the mouth is formed at a different site later on. This was initially the group's distinguishing characteristic, but deuterostomy has since been discovered among protostomes as well.[5] This group is also known as enterocoelomates, because their coelom develops through enterocoely.

Deuterostomia's sister clade is Protostomia, animals that develop mouth first and whose digestive tract development is more varied. Protostomia includes the ecdysozoans (panarthropods, nematoids, penis worms, mud dragons etc.) and spiralians (mollusks, annelids, flatworms, rotifers, arrow worms, etc.), as well as the extinct Kimberella. Together with Protostomia and their outgroup Xenacoelomorpha, they constitute the large infrakingdom Bilateria, i.e. animals with bilateral symmetry and three germ layers.

Systematics

History

Initially, Deuterostomia included the phyla Brachiopoda,[6] Bryozoa,[7] Chaetognatha,[8] and Phoronida[6] based on morphological and embryological characteristics. However, Deuterostomia was redefined in 1995 based on DNA molecular sequence analyses, leading to the removal of the lophophorates which was later combined with other protostome animals to form the superphylum Lophotrochozoa.[9] The arrow worms may also be deuterostomes,[8] but molecular studies have placed them in the protostomes more often.[10][11] Genetic studies have also revealed that deuterostomes have more than 30 genes not found in any other animal groups, but which yet are present in some marine algae and prokaryotes. This could mean they are very ancient genes that were lost in other organisms, or that a common ancestor acquired them through horizontal gene transfer.[12]

While protostomes as a monophyletic group has strong support, research has shown that deuterostomes may be paraphyletic, and what was once considered traits of deuterostomes could instead be traits of the last common bilaterian ancestor. This suggests the deuterostome branch is very short or non-existent. The Xenambulacraria's sister group could be both the chordates or the protostomes, or be equally distantly related to them both.[13]

Classification

This is the generally agreed upon phylogeny of the deuterostomes:

There is a possibility that Ambulacraria is the sister clade to Xenacoelomorpha, and could form the Xenambulacraria group.[14][15][16]

Notable characteristics

Early development differences between deuterostomes versus protostomes. In deuterostomes, blastula divisions occur as radial cleavage because they occur parallel or perpendicular to the major polar axis. In protostomes the cleavage is spiral because division planes are oriented obliquely to the polar major axis. During gastrulation, deuterostome embryos' anus is given first by the blastopore while the mouth is formed secondarily, and vice versa for the protostomes

In both deuterostomes and protostomes, a zygote first develops into a hollow ball of cells, called a blastula. In deuterostomes, the early divisions occur parallel or perpendicular to the polar axis. This is called radial cleavage, and also occurs in certain protostomes, such as the lophophorates.

Most deuterostomes display indeterminate cleavage, in which the developmental fate of the cells in the developing embryo is not determined by the identity of the parent cell. Thus, if the first four cells are separated, each can develop into a complete small larva; and if a cell is removed from the blastula, the other cells will compensate.

In deuterostomes the mesoderm forms as evaginations of the developed gut that pinch off to form the coelom. This process is called enterocoely.

Another feature present in both the Hemichordata and Chordata is pharyngotremy; the presence of spiracles or gill slits into the pharynx, which is also found in some primitive fossil echinoderms (mitrates).[17][18] A hollow nerve cord is found in all chordates, including tunicates (in the larval stage). Some hemichordates also have a tubular nerve cord. In the early embryonic stage, it looks like the hollow nerve cord of chordates.

Except for the echinoderms, both the hemichordates and the chordates have a thickening of the aorta, homologous to the chordate heart, which contracts to pump blood. This suggests a presence in the deuterostome ancestor of the three groups, with the echinoderms having secondarily lost it.[citation needed]

The highly modified nervous system of echinoderms obscures much about their ancestry, but several facts suggest that all present deuterostomes evolved from a common ancestor that had pharyngeal gill slits, a hollow nerve cord, circular and longitudinal muscles and a segmented body.[19]

Formation of mouth and anus

The defining characteristic of the deuterostome is the fact that the blastopore (the opening at the bottom of the forming gastrula) becomes the anus, whereas in protostomes the blastopore becomes the mouth. The deuterostome mouth develops at the opposite end of the embryo, from the blastopore, and a digestive tract develops in the middle, connecting the two.

In many animals, these early development stages later evolved in ways that no longer reflect these original patterns. For instance, humans have already formed a gut tube at the time of formation of the mouth and anus. Then the mouth forms first[citation needed], during the fourth week of development, and the anus forms four weeks later, temporarily forming a cloaca.

Origins and evolution

Bilateria, one of the five major lineages of animals, is split into two groups; the protostomes and deuterostomes. Deuterostomes consist of chordates (which include the vertebrates) and ambulacrarians.[20] It seems likely that the 555 million year old Kimberella was a member of the protostomes.[21][22] That implies that the protostome and deuterostome lineages split some time before Kimberella appeared — at least 558 million years ago, and hence well before the start of the Cambrian 538.8 million years ago,[20] i.e. during the later part of the Ediacaran Period (circa 635-539 Mya, around the end of global Marinoan glaciation in the late Neoproterozoic). It has been proposed that the ancestral deuterostome, before the chordate/ambulacrarian split, could have been a chordate-like animal with a terminal anus and pharyngeal openings but no gill slits, with active suspension feeding strategy.[23]

The last common ancestor of the deuterostomes had lost all innexin diversity.[24]

Fossils of one major deuterostome group, the echinoderms (whose modern members include sea stars, sea urchins and crinoids), are quite common from the start of Series 2 of the Cambrian, 521 million years ago.[25] The Mid Cambrian fossil Rhabdotubus johanssoni has been interpreted as a pterobranch hemichordate.[26] Opinions differ about whether the Chengjiang fauna fossil Yunnanozoon, from the earlier Cambrian, was a hemichordate or chordate.[27][28] Another Chengjiang fossil, Haikouella lanceolata, is interpreted as a chordate and possibly a craniate, as it shows signs of a heart, arteries, gill filaments, a tail, a neural chord with a brain at the front end, and possibly eyes — although it also had short tentacles round its mouth.[28] Haikouichthys and Myllokunmingia, also from the Chengjiang fauna, are regarded as fish.[29][30] Pikaia, discovered much earlier but from the Mid Cambrian Burgess Shale, is also regarded as a primitive chordate.[31]

On the other hand, fossils of early chordates are very rare, as non-vertebrate chordates have no bone tissue or teeth, and fossils of no Post-Cambrian non-vertebrate chordates are known aside from the Permian-aged Paleobranchiostoma, trace fossils of the Ordovician colonial tunicate Catellocaula, and various Jurassic-aged and Tertiary-aged spicules tentatively attributed to ascidians.

Phylogeny

Below is a phylogenetic tree showing consensus relationships among deuterostome taxa. Phylogenomic evidence suggests the enteropneust family, Torquaratoridae, fall within the Ptychoderidae. The tree is based on 16S +18S rRNA sequence data and phylogenomic studies from multiple sources.[32][13] The approximate dates for each radiation into a new clade are given in millions of years ago (Mya). Not all dates are consistent, as of date ranges only the center is given.[33]


Bilateria

Support for the clade Deuterostomia is not unequivocal. In particular, the Ambulacraria are sometimes shown to be related to the Xenacoelomorpha. If true, this raises two possibilities: either the Ambulacraria are taken out of the deuterostome-protostome dichotomy (in which case the grouping Deuterostomia dissolves, with Chordata and Protostomia grouped together as Centroneuralia), or the Xenacoelomorpha are re-positioned next to Ambulacraria within the Deuterostomia as in the above diagram.[13][34][35][36][37][38][39][40]

Fossil record

Deuterostomes have a rich fossil record with thousands of fossil species being found throughout the Phanerozoic. The earliest undisputed deuterostomes are forms such as the early chordate Pikaia and the early echinoderm Gogia, each from about 515 million years ago. There are also a few earlier fossils that may represent deuterostomes, but these remain debated. The earliest of these disputed fossils are the tunicate-like organisms Finkoella and Ausia from the Ediacaran period. While these may in fact be tunicates, others have interpreted them as cnidarians[41] or sponges,[42] and as such their true affinity remains uncertain.

References

  1. ^ Fedonkin, M. A.; Vickers-Rich, P.; Swalla, B. J.; Trusler, P.; Hall, M. (2012). "A new metazoan from the Vendian of the White Sea, Russia, with possible affinities to the ascidians". Paleontological Journal. 46 (1): 1–11. Bibcode:2012PalJ...46....1F. doi:10.1134/S0031030112010042. S2CID 128415270.
  2. ^ Han, Jian; Morris, Simon Conway; Ou, Qiang; Shu, Degan; Huang, Hai (2017). "Meiofaunal deuterostomes from the basal Cambrian of Shaanxi (China)". Nature. 542 (7640): 228–231. Bibcode:2017Natur.542..228H. doi:10.1038/nature21072. PMID 28135722. S2CID 353780.
  3. ^ Wade, Nicholas (30 January 2017). "This Prehistoric Human Ancestor Was All Mouth". The New York Times. Retrieved 31 January 2017.
  4. ^ Han, Jian; Morris, Simon Conway; Ou, Qiang; Shu, Degan; Huang, Hai (2017). "Meiofaunal deuterostomes from the basal Cambrian of Shaanxi (China)". Nature. 542 (7640): 228–231. Bibcode:2017Natur.542..228H. doi:10.1038/nature21072. ISSN 0028-0836. PMID 28135722. S2CID 353780.
  5. ^ Martín-Durán, José M.; Passamaneck, Yale J.; Martindale, Mark Q.; Hejnol, Andreas (2016). "The developmental basis for the recurrent evolution of deuterostomy and protostomy". Nature Ecology & Evolution. 1 (1): 0005. doi:10.1038/s41559-016-0005. PMID 28812551. S2CID 90795.
  6. ^ a b Eernisse, Douglas J.; Albert, James S.; Anderson, Frank E. (1992-09-01). "Annelida and Arthropoda are Not Sister Taxa: A Phylogenetic Analysis of Spiralian Metazoan Morphology". Systematic Biology. 41 (3): 305–330. doi:10.1093/sysbio/41.3.305. ISSN 1063-5157.
  7. ^ Nielsen, C. (July 2002). "The Phylogenetic Position of Entoprocta, Ectoprocta, Phoronida, and Brachiopoda". Integrative and Comparative Biology. 42 (3): 685–691. doi:10.1093/icb/42.3.685. PMID 21708765.
  8. ^ a b Brusca, R.C.; Brusca, G.J. (1990). Invertebrates. Sinauer Associates. p. 669.
  9. ^ Halanych, K.M.; Bacheller, J.; Liva, S.; Aguinaldo, A. A.; Hillis, D.M. & Lake, J.A. (17 March 1995). "18S rDNA evidence that the Lophophorates are Protostome Animals". Science. 267 (5204): 1641–1643. Bibcode:1995Sci...267.1641H. doi:10.1126/science.7886451. PMID 7886451. S2CID 12196991.
  10. ^ Marlétaz, Ferdinand; Martin, Elise; Perez, Yvan; Papillon, Daniel; Caubit, Xavier; Lowe, Christopher J.; Freeman, Bob; Fasano, Laurent; Dossat, Carole; Wincker, Patrick; Weissenbach, Jean (2006-08-01). "Chaetognath phylogenomics: a protostome with deuterostome-like development". Current Biology. 16 (15): R577–R578. doi:10.1016/j.cub.2006.07.016. PMID 16890510. S2CID 18339954.
  11. ^ Marlétaz, Ferdinand; Peijnenburg, Katja T.C.A.; Goto, Taichiro; Satoh, Noriyuki; Rokhsar, Daniel S. (2019-01-21). "A New Spiralian Phylogeny Places the Enigmatic Arrow Worms among Gnathiferans". Current Biology. 29 (2): 312–318.e3. doi:10.1016/j.cub.2018.11.042. PMID 30639106.
  12. ^ Acorn worm genome reveals gill origins of human pharynx | Berkeley News
  13. ^ a b c Kapli, Paschalia; Natsidis, Paschalis; Leite, Daniel J.; Fursman, Maximilian; Jeffrie, Nadia; Rahman, Imran A.; Philippe, Hervé; Copley, Richard R.; Telford, Maximilian J. (March 1, 2021). "Lack of support for Deuterostomia prompts reinterpretation of the first Bilateria". Science Advances. 7 (12): eabe2741. Bibcode:2021SciA....7.2741K. doi:10.1126/sciadv.abe2741. PMC 7978419. PMID 33741592.
  14. ^ Bourlat, Sarah J.; Juliusdottir, Thorhildur; Lowe, Christopher J.; Freeman, Robert; Aronowicz, Jochanan; Kirschner, Mark; Lander, Eric S.; Thorndyke, Michael; Nakano, Hiroaki; Kohn, Andrea B.; Heyland, Andreas; Moroz, Leonid L.; Copley, Richard R.; Telford, Maximilian J. (2006). "Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida". Nature. 444 (7115): 85–88. Bibcode:2006Natur.444...85B. doi:10.1038/nature05241. ISSN 0028-0836. PMID 17051155. S2CID 4366885.
  15. ^ Philippe, Hervé; Poustka, Albert J.; Chiodin, Marta; Hoff, Katharina J.; Dessimoz, Christophe; Tomiczek, Bartlomiej; Schiffer, Philipp H.; Müller, Steven; Domman, Daryl; Horn, Matthias; Kuhl, Heiner; Timmermann, Bernd; Satoh, Noriyuki; Hikosaka-Katayama, Tomoe; Nakano, Hiroaki; Rowe, Matthew L.; Elphick, Maurice R.; Thomas-Chollier, Morgane; Hankeln, Thomas; Mertes, Florian; Wallberg, Andreas; Rast, Jonathan P.; Copley, Richard R.; Martinez, Pedro; Telford, Maximilian J. (2019). "Mitigating Anticipated Effects of Systematic Errors Supports Sister-Group Relationship between Xenacoelomorpha and Ambulacraria". Current Biology. 29 (11): 1818–1826.e6. doi:10.1016/j.cub.2019.04.009. hdl:21.11116/0000-0004-DC4B-1. ISSN 0960-9822. PMID 31104936. S2CID 155104811.
  16. ^ Marlétaz, Ferdinand (2019-06-17). "Zoology: Worming into the Origin of Bilaterians". Current Biology. 29 (12): R577–R579. doi:10.1016/j.cub.2019.05.006. ISSN 0960-9822. PMID 31211978.
  17. ^ Graham, A; Richardson, J (2012). "Developmental and evolutionary origins of the pharyngeal apparatus". Evodevo. 3 (1): 24. doi:10.1186/2041-9139-3-24. PMC 3564725. PMID 23020903.
  18. ^ Valentine, James W. (June 18, 2004). On the Origin of Phyla. University of Chicago Press. ISBN 978-0-226-84548-7 – via Google Books.
  19. ^ Smith, Andrew B. (2012). "Cambrian problematica and the diversification of deuterostomes". BMC Biology. 10 (79): 79. doi:10.1186/1741-7007-10-79. PMC 3462677. PMID 23031503.
  20. ^ a b Erwin, Douglas H.; Eric H. Davidson (1 July 2002). "The last common bilaterian ancestor". Development. 129 (13): 3021–3032. doi:10.1242/dev.129.13.3021. PMID 12070079.
  21. ^ Fedonkin, M.A.; Simonetta, A; Ivantsov, A.Y. (2007), "New data on Kimberella, the Vendian mollusc-like organism (White sea region, Russia): palaeoecological and evolutionary implications", in Vickers-Rich, Patricia; Komarower, Patricia (eds.), The Rise and Fall of the Ediacaran Biota, Special publications, vol. 286, London: Geological Society, pp. 157–179, doi:10.1144/SP286.12, ISBN 978-1-86239-233-5, OCLC 156823511
  22. ^ Butterfield, N.J. (December 2006). "Hooking some stem-group "worms": fossil lophotrochozoans in the Burgess Shale". BioEssays. 28 (12): 1161–1166. doi:10.1002/bies.20507. PMID 17120226. S2CID 29130876.
  23. ^ Li, Yujing; Dunn, Frances S.; Murdock, Duncan J.E.; Guo, Jin; Rahman, Imran A.; Cong, Peiyun (May 10, 2023). "Cambrian stem-group ambulacrarians and the nature of the ancestral deuterostome". Current Biology. 33 (12): 2359–2366.e2. doi:10.1016/j.cub.2023.04.048. PMID 37167976.
  24. ^ Connexins evolved after early chordates lost innexin diversity
  25. ^ Bengtson, S. (2004). Lipps, J.H.; Waggoner, B.M. (eds.). "Early Skeletal Fossils in Neoproterozoic–Cambrian Biological Revolutions" (PDF). Paleontological Society Papers. 10: 67–78. doi:10.1017/S1089332600002345.
  26. ^ Bengtson, S.; Urbanek, A. (October 2007). "Rhabdotubus, a Middle Cambrian rhabdopleurid hemichordate". Lethaia. 19 (4): 293–308. doi:10.1111/j.1502-3931.1986.tb00743.x.
  27. ^ Shu, D.; Zhang, X. & Chen, L. (April 1996). "Reinterpretation of Yunnanozoon as the earliest known hemichordate". Nature. 380 (6573): 428–430. Bibcode:1996Natur.380..428S. doi:10.1038/380428a0. S2CID 4368647.
  28. ^ a b Chen, J-Y.; Hang, D-Y. & Li, C.W. (December 1999). "An early Cambrian craniate-like chordate". Nature. 402 (6761): 518–522. Bibcode:1999Natur.402..518C. doi:10.1038/990080. S2CID 24895681.
  29. ^ Shu, D.-G.; Conway Morris, S.; Han, J.; et al. (January 2003). "Head and backbone of the Early Cambrian vertebrate Haikouichthys". Nature. 421 (6922): 526–529. Bibcode:2003Natur.421..526S. doi:10.1038/nature01264. PMID 12556891. S2CID 4401274.
  30. ^ Shu, D.-G.; Conway Morris, S. & Zhang, X.-L. (November 1999). "Lower Cambrian vertebrates from south China". Nature. 402 (6757): 42–46. Bibcode:1999Natur.402...42S. doi:10.1038/46965. S2CID 4402854.
  31. ^ Shu, D.-G.; Conway Morris, S. & Zhang, X.-L. (November 1996). "A Pikaia-like chordate from the Lower Cambrian of China". Nature. 384 (6605): 157–158. Bibcode:1996Natur.384..157S. doi:10.1038/384157a0. S2CID 4234408.
  32. ^ Tassia, Michael G.; Cannon, Johanna T.; Konikoff, Charlotte E.; Shenkar, Noa; Halanych, Kenneth M.; Swalla, Billie J. (2016-10-04). "The Global Diversity of Hemichordata". PLOS ONE. 11 (10): e0162564. Bibcode:2016PLoSO..1162564T. doi:10.1371/journal.pone.0162564. PMC 5049775. PMID 27701429.
  33. ^ Han, Jian; Morris, Simon Conway; Ou, Qian; Shu, Degan; Huang, Hai (2017). "Meiofaunal deuterostomes from the basal Cambrian of Shaanxi (China)". Nature. 542 (7640): 228–231. Bibcode:2017Natur.542..228H. doi:10.1038/nature21072. PMID 28135722. S2CID 353780.
  34. ^ Philippe, Hervé; Poustka, Albert J.; Chiodin, Marta; Hoff, Katharina J.; Dessimoz, Christophe; Tomiczek, Bartlomiej; Schiffer, Philipp H.; Müller, Steven; Domman, Daryl; Horn, Matthias; Kuhl, Heiner (2019-06-03). "Mitigating Anticipated Effects of Systematic Errors Supports Sister-Group Relationship between Xenacoelomorpha and Ambulacraria". Current Biology. 29 (11): 1818–1826.e6. doi:10.1016/j.cub.2019.04.009. hdl:21.11116/0000-0004-DC4B-1. ISSN 0960-9822. PMID 31104936.
  35. ^ Robertson, Helen E.; Lapraz, François; Egger, Bernhard; Telford, Maximilian J.; Schiffer, Philipp H. (2017-05-12). "The mitochondrial genomes of the acoelomorph worms Paratomella rubra, Isodiametra pulchra and Archaphanostoma ylvae". Scientific Reports. 7 (1): 1847. Bibcode:2017NatSR...7.1847R. doi:10.1038/s41598-017-01608-4. ISSN 2045-2322. PMC 5431833. PMID 28500313.
  36. ^ Philippe, Hervé; Brinkmann, Henner; Copley, Richard R.; Moroz, Leonid L.; Nakano, Hiroaki; Poustka, Albert J.; Wallberg, Andreas; Peterson, Kevin J.; Telford, Maximilian J. (2011-02-10). "Acoelomorph flatworms are deuterostomes related to Xenoturbella". Nature. 470 (7333): 255–258. Bibcode:2011Natur.470..255P. doi:10.1038/nature09676. ISSN 0028-0836. PMC 4025995. PMID 21307940.
  37. ^ Edgecombe, Gregory D.; Giribet, Gonzalo; Dunn, Casey W.; Hejnol, Andreas; Kristensen, Reinhardt M.; Neves, Ricardo C.; Rouse, Greg W.; Worsaae, Katrine; Sørensen, Martin V. (June 2011). "Higher-level metazoan relationships: recent progress and remaining questions". Organisms, Diversity & Evolution. 11 (2): 151–172. doi:10.1007/s13127-011-0044-4. S2CID 32169826.
  38. ^ Rouse, Greg W.; Wilson, Nerida G.; Carvajal, Jose I.; Vriejenhoek, Robert C. (4 February 2016). "New deep-sea species of Xenoturbella and the position of Xenacoelomorpha". Nature. 530 (2): 94–97. Bibcode:2016Natur.530...94R. doi:10.1038/nature16545. PMID 26842060. S2CID 3870574.
  39. ^ Cannon, Johanna Taylor; Vellutini, Bruno Cossermelli; Smith III, Julian; Ronquist, Frederik; Jondelius, Ulf; Hejnol, Andreas (4 February 2016). "Xenacoelomorpha is the sister group to Nephrozoa". Nature. 530 (2): 89–93. Bibcode:2016Natur.530...89C. doi:10.1038/nature16520. PMID 26842059. S2CID 205247296.
  40. ^ Paschalia Kapli; Maximilian J. Telford (11 December 2020). "Topology-dependent asymmetry in systematic errors affects phylogenetic placement of Ctenophora and Xenacoelomorpha". Science Advances. 6 (50): eabc5162. Bibcode:2020SciA....6.5162K. doi:10.1126/sciadv.abc5162. PMC 7732190. PMID 33310849.
  41. ^ Hahn, G; Pflug, H. D (1985). "Polypenartige Organismen aus dem Jung-Präkambrium (Nama-Gruppe) von Namibia". Pascal-Francis. Retrieved 13 March 2024.
  42. ^ M. A. Fedonkin (1996). "Ausia as an ancestor of archeocyathans, and other sponge-like organisms". In: Enigmatic Organisms in Phylogeny and Evolution. Abstracts. Moscow, Paleontological Institute, Russian Academy of Sciences, p. 90-91.

Further reading

External links