Antimicrobial peptides

from Wikipedia, the free encyclopedia
Different types of antimicrobial peptides

Antimicrobial peptides (also defense peptides ) are peptides that have antimicrobial properties.

properties

Antimicrobial peptides are found in all realms of life. So far, over 1200 peptides with antimicrobial effects have been described. They serve to ward off infection with microorganisms . The effectiveness extends to Gram-negative and Gram-positive bacteria , enveloped viruses , fungi and tumor cells . In contrast to some antibiotics , the effect against bacteria is bactericidal , not bacteriostatic . The minimum inhibitory concentration is used as a measure of the effectiveness . Antimicrobial peptides from mammals also often have an immunoregulatory effect.

Antimicrobial peptides are between 12 and 50 amino acids in length . They are divided into different types according to their amino acid sequence . They usually contain two or more positively charged amino acids such as lysine , arginine and, in an acidic environment, also histidine . Furthermore, they often contain more than 50% hydrophobic amino acids. Due to their short length, they are flexible and only adopt their final conformation through protein-lipid interactions when they bind to a biomembrane . The hydrophilic amino acids are oriented towards the aqueous side, while the hydrophobic ones are oriented towards the lipids of the biomembrane. Some antimicrobial peptides are pore-forming toxins , others pass the biomembrane first and then bind to a cytosolic molecule, e.g. B. in protein biosynthesis , protein folding and the synthesis of the cell wall .

The selective effect against bacterial cells and not against mammalian cells results from the positively charged amino acids contained, as the bacterial cell wall is more negatively charged than the mammalian cell membrane . Furthermore, cholesterol is not found in bacterial cell walls, but in mammalian biomembranes. In addition, the membrane potential differs .

Mechanisms of the antimicrobial peptides
Type property Examples
Loop-shaped peptides rich in glutamic acid and aspartic acid , with a disulfide bridge Maximin H5 from amphibians, dermcidin from humans
Linear α-helical peptides without cysteine , amphipathic Cecropine , Andropin , Moricin , Ceratotoxin and Melittin from insects, Magainin , Dermaseptin , Bombinin , Brevinin-1 , Esculentine and Buforin II from amphibians , CAP18 from rabbits, Cathelicidin LL37 in humans, Pexiganan
Expanded peptides with an accumulation of an amino acid Proline , arginine , phenylalanine , histidine , tryptophan Abaecin , Apidaecins from honeybees, Prophenin from pigs, Indolicidin from cows, Bac5, Bac7
β-sheet peptides with 2 or 3 disulfide bridges 4 or 6 cysteines 1 Bridge: Brevinine , 2: protegrin from pigs tachyplesins from horseshoe crabs, 3: α-, β- defensins of man,> 3: Drosomycin ais fruit flies

Resistance mechanisms have been developed against various antimicrobial peptides .

Antimicrobial peptides are listed in the databases CAMP, CAMP release 2 (Collection of sequences and structures of antimicrobial peptides), Antimicrobial Peptide Database, LAMP, BioPD and ADAM (A Database of Anti-Microbial peptides).

Applications

Antimicrobial peptides, like bacteriophages in phage therapy , are being investigated for use as topically applied biocides , in particular for the treatment of multi-resistant pathogens and for the treatment of skin and wound infections. However, in contrast to antibiotic resistance, a resistance to antimicrobial peptides that may arise in bacteria can lead to a less effective immune reaction due to the body's own antimicrobial peptides, while antibiotics are not produced by humans. They are also being investigated for the treatment of tumors due to their cytolytic properties . In treating bacterial infections, selective destruction of only the bacterial cells is required.

literature

Individual evidence

  1. T. Nakatsuji, RL Gallo: Antimicrobial peptides: old molecules with new ideas. In: Journal of Investigative Dermatology . Volume 132, number 3 Pt 2, 2012, pp. 887-895, doi: 10.1038 / jid.2011.387 . PMID 22158560 , PMC 3279605 (free full text).
  2. a b K.V. Reddy, RD Yedery, C. Aranha: Antimicrobial peptides: premises and promises. In: International journal of antimicrobial agents. Volume 24, Number 6, December 2004, pp. 536-547, doi: 10.1016 / j.ijantimicag.2004.09.005 . PMID 15555874 .
  3. ^ D. Amsterdam: Susceptibility testing of Antimicrobials in liquid media. In: V. Lorian: Antibiotics in Laboratory Medicine. 4th edition. Williams and Wilkins, Baltimore, Md. 1996, pp. 52-111.
  4. ^ A b M. R. Yeaman, NY Yount: Mechanisms of antimicrobial peptide action and resistance. In: Pharmacological reviews. Volume 55, Issue 1, 2003, pp. 27-55, doi: 10.1124 / pr.55.1.2 . PMID 12615953 .
  5. ^ M. Papagianni: Ribosomally synthesized peptides with antimicrobial properties: biosynthesis, structure, function, and applications. In: Biotechnol Adv. Volume 21, Issue 6, 2003, pp. 465-499, doi: 10.1016 / S0734-9750 (03) 00077-6 . PMID 14499150 .
  6. N. Sitaram, R. Nagaraj: Host-defense antimicrobial peptides: importance of structure for activity. In: Current pharmaceutical design. Volume 8, Number 9, 2002, pp. 727-742. PMID 11945168 .
  7. UH Dürr, US Sudheendra, A. Ramamoorthy: LL-37, the only human member of the cathelicidin family of antimicrobial peptides. In: Biochimica et Biophysica Acta . Volume 1758, number 9, September 2006, pp. 1408-1425, doi: 10.1016 / j.bbamem.2006.03.030 . PMID 16716248 .
  8. G. Wang, B. Mishra, K. Lau, T. Lushnikova, R. Golla, X. Wang: Antimicrobial peptides in 2014. In: Pharmaceuticals . Volume 8, number 1, 2015, pp. 123-150, doi: 10.3390 / ph8010123 . PMID 25806720 , PMC 4381204 (free full text).
  9. ^ LT Nguyen, EF Haney, HJ Vogel: The expanding scope of antimicrobial peptide structures and their modes of action. In: Trends in biotechnology. Volume 29, number 9, September 2011, pp. 464-472, doi: 10.1016 / j.tibtech.2011.05.001 . PMID 21680034 .
  10. ^ RE Hancock, HG Sahl: Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. In: Nature Biotechnology . Volume 24, Number 12, December 2006, pp. 1551–1557, doi: 10.1038 / nbt1267 . PMID 17160061 .
  11. M. Zasloff: Antimicrobial peptides of multicellular organisms. In: Nature. Volume 415, Number 6870, January 2002, pp. 389-395, doi: 10.1038 / 415389a . PMID 11807545 .
  12. K. Matsuzaki, K. Sugishita, N. Fujii, K. Miyajima: Molecular basis for membrane selectivity of an antimicrobial peptide, magainin 2. In: Biochemistry. Volume 34, Number 10, March 1995, pp. 3423-3429. PMID 7533538 .
  13. ^ MD Seo, HS Won, JH Kim, T. Mishig-Ochir, BJ Lee: Antimicrobial peptides for therapeutic applications: a review. In: Molecules . Volume 17, number 10, 2012, pp. 12276-12286, doi: 10.3390 / molecules171012276 . PMID 23079498 .
  14. B. Mojsoska, H. Jenssen: Peptides and Peptidomimetics for Antimicrobial Drug Design. In: Pharmaceuticals . Volume 8, number 3, 2015, pp. 366-415, doi: 10.3390 / ph8030366 . PMID 26184232 , PMC 4588174 (free full text).
  15. S. Gruenheid, H. Le Moual: Resistance to antimicrobial peptides in Gram-negative bacteria. In: FEMS microbiology letters. Volume 330, Number 2, May 2012, pp. 81-89, doi: 10.1111 / j.1574-6968.2012.02528.x . PMID 22339775 .
  16. JL Thomassin, JR Brannon, J. Kaiser, S. Gruenheid, H. Le Moual: Enterohemorrhagic and enteropathogenic Escherichia coli evolved different strategies to resist antimicrobial peptides. In: Gut microbes. Volume 3, Number 6, Nov-Dec 2012, pp. 556-561, doi: 10.4161 / gmic.21656 . PMID 22895086 , PMC 3495793 (free full text).
  17. S. Ryu, PI Song, CH Seo, H. Cheong, Y. Park: Colonization and infection of the skin by S. aureus: immune system evasion and the response to cationic antimicrobial peptides. In: International journal of molecular sciences. Volume 15, number 5, 2014, pp. 8753-8772, doi: 10.3390 / ijms15058753 . PMID 24840573 , PMC 4057757 (free full text).
  18. SL Chua, SY Tan, MT Rybtke, Y. Chen, SA Rice, S. Kjelleberg, T. Tolker-Nielsen, L. Yang, M. Givskov: Bis- (3'-5 ') - cyclic dimeric GMP regulates antimicrobial peptide resistance in Pseudomonas aeruginosa. In: Antimicrobial agents and chemotherapy. Volume 57, number 5, May 2013, pp. 2066-2075, doi: 10.1128 / AAC.02499-12 . PMID 23403434 , PMC 3632963 (free full text).
  19. MA Campos, MA Vargas, V. Regueiro, CM Llompart, S. Albertí, JA Bengoechea: Capsule polysaccharide mediates bacterial resistance to antimicrobial peptides. In: Infection and Immunity. Volume 72, number 12, December 2004, pp. 7107-7114, doi: 10.1128 / IAI.72.12.7107-7114.2004 . PMID 15557634 , PMC 529140 (free full text).
  20. Catherine L. Shelton, Forrest K. Raffel, Wandy L. Beatty, Sara M. Johnson, Kevin M. Mason, H. Steven Seifert: Sap Transporter Mediated Import and Subsequent Degradation of Antimicrobial Peptides in Haemophilus. In: PLoS Pathogens. 7, 2011, p. E1002360, doi: 10.1371 / journal.ppat.1002360 .
  21. G. Laverty, SP Gorman, BF Gilmore: The potential of antimicrobial peptides as biocides. In: International journal of molecular sciences. Volume 12, Number 10, 2011, pp. 6566-6596, doi: 10.3390 / ijms12106566 . PMID 22072905 , PMC 3210996 (free full text).
  22. M. Malmsten: Antimicrobial peptides. In: Upsala journal of medical sciences. Volume 119, number 2, May 2014, pp. 199-204, doi: 10.3109 / 03009734.2014.899278 . PMID 24758244 , PMC 4034559 (free full text).
  23. NH O'Driscoll, O. Labovitiadi, TP Cushnie, KH Matthews, DK Mercer, AJ Lamb: Production and evaluation of an antimicrobial peptide-containing wafer formulation for topical application. In: Current microbiology. Volume 66, Number 3, March 2013, pp. 271-278, doi: 10.1007 / s00284-012-0268-3 . PMID 23183933 .
  24. MGJL Habets, MA Brockhurst: Therapeutic antimicrobial peptides may compromise natural immunity. In: Biology Letters. Volume 8, number 3, 2012, p. 416, doi: 10.1098 / rsbl.2011.1203 .
  25. JJ Guzmán-Rodríguez, A. Ochoa-Zarzosa, R. López-Gómez, JE López-Meza: Plant antimicrobial peptides as potential anticancer agents. In: BioMed research international. Volume 2015, p. 735087, doi: 10.1155 / 2015/735087 . PMID 25815333 , PMC 4359852 (free full text).
  26. K. Matsuzaki: Control of cell selectivity of antimicrobial peptides. In: Biochimica et Biophysica Acta . Volume 1788, number 8, August 2009, pp. 1687-1692, doi: 10.1016 / j.bbamem.2008.09.013 . PMID 18952049 .