List of early electrical energy transmissions

from Wikipedia, the free encyclopedia

This page lists early electrical power transmission systems. The list is divided into early power plants with distribution networks and first transmission lines. Where there are Wikipedia articles on the plant, this is linked under power plant or route . Individual references are only given for the systems where there is no Wikipedia article.

Distribution networks

The first power plants supplied distribution networks in the immediate vicinity of the machine house . The distance from the nacelle to the most distant consumer is given under distance .

Installation country power plant distance Type of current tension frequency power Engineers Companies Remarks
July 24, 1880 United StatesUnited States United States Grand Rapids, Michigan Direct current C. Brush
January 12, 1882 United KingdomUnited Kingdom United Kingdom Holborn Viaduct Power Station , London Direct current 110 V 186 kW T. Edison Edison
September 4, 1882 United StatesUnited States United States Pearl Street Station , New York 0.8 km Direct current 220 V 400 kW T. Edison Edison
September 30, 1882 United StatesUnited States United States Vulcan Street Plant , Appleton, Wisconsin Direct current 110 V 12.5 kW T. Edison Edison
June 28, 1883 ItalyItaly Italy Santa Radegonda power station , Milan 0.4 km Direct current 220 V 525 kW T. Edison
G. Colombo
Edison
August 15, 1884 GermanyGermany Germany Centralstation Markgrafenstrasse , Berlin 2.2 km Direct current 110 V 540 kW O. by Miller
E. Rathenau

Transmission lines

Transmission lines connect the power station with the consumer over a longer distance.

Installation country Plant / route length Type of current tension frequency power use Engineers Companies Remarks
September 25, 1882 GermanyGermany Germany Miesbach – Munich 57 km Direct current 2000 BC 1.1 kW exhibition M. Depréz
O. von Miller
February 1883 FranceFrance France Paris - Le Bourget 15 km Direct current 2700 V 1.5 kW attempt M. Depréz NORTH
September 1883 FranceFrance France Vizille - Grenoble 14 km Direct current 3000 V 5.1 kW attempt M. Depréz
1883 FranceFrance France Bellegarde-sur-Valserine Direct current 150 kW Distribution network L. Dumont
1884 SwitzerlandSwitzerland Switzerland Taubenloch Gorge - Bözingen 1.2 km Direct current 500 V 30 kW Energy for the factory R. Thury A. De Meuron & Cuénod
September 29, 1884 ItalyItaly Italy Turin - Lanzo Torinese 40 km Single phase alternating current 3000 V 150 Hz 44 kW exhibition L. Gaulard VICTORY
October 1885 FranceFrance France Paris - Creil 56 km Direct current 5000 V 25 kW attempt M. Depréz NORTH
May 1886 SwitzerlandSwitzerland Switzerland Littau – Lucerne 2.4 km Direct current 37 kW Energy for the factory
May 1886 SwitzerlandSwitzerland Switzerland Littau – Lucerne 4.6 km Single phase alternating current 1800 BC 40 Hz 68 kW Supply network for lighting
December 18, 1886 SwitzerlandSwitzerland Switzerland Kriegstetten – Solothurn 8 kilometers Direct current 2000 BC 37 kW Energy for the factory CEL Boveri MFO
1888 SwitzerlandSwitzerland Switzerland Buochs ​​– Bürgenstock 4.2 km Direct current 2000 BC 44 kW Funicular R. Thury Cuénod, Sautter
1889 ItalyItaly Italy Acquedotto De Ferrari Galliera Direct current
( Thury system )
attempt R. Thury Cuénod, Sautter
1889 FranceFrance France Revel-Moutier 5 km Direct current 2800 V 220 kW Energy for the factory M. Depréz
1889 United StatesUnited States United States Portland - Oregon City 21 km Direct current
1890 United StatesUnited States United States Portland - Oregon City 21 km Single phase alternating current
1890 United KingdomUnited Kingdom United Kingdom Greenside Mine 1.2 km Direct current 600 V 75 kW Energy for silver mine
1890 ItalyItaly Italy Isoverde - San Quirico 14.4 km Direct current
( Thury system )
2200 V Distribution network R. Thury Cuénod, Sautter
1891 ItalyItaly Italy Isoverde - Genoa 46.2 km Direct current
( Thury system )
2200 V Distribution network R. Thury Cuénod, Sautter
August 25, 1891 GermanyGermany Germany Lauffen – Frankfurt 176 km Three-phase alternating current 15 kV 40 Hz 221 kW exhibition O. by Miller
C. EL Boveri
M. Doliwo-Dobrowolski
MFO
AEG
June 1891 United StatesUnited States United States Ames – Telluride 4.2 km Single phase alternating current 3000 V 133 Hz 75 kW Energy for gold mine G. Westinghouse Westinghouse
1892 ItalyItaly Italy Isoverde - Sampierdarena 32.7 km Direct current
( Thury system )
2200 V Distribution network R. Thury Cuénod, Sautter
1892 SwitzerlandSwitzerland Switzerland Hochfelden - Oerlikon 23 km Three-phase alternating current 30 kV 50 Hz Energy for the factory MFO
1893 SwitzerlandSwitzerland Switzerland Frinvillier - beaverist 28.5 km Direct current
( Thury system )
6000 V 270 kW Energy for the factory R. Thury CIE
August 26, 1895 United StatesUnited States United States Niagara Falls – Buffalo 35 km Three-phase alternating current 11 kV 25 Hz Tram
factory
GE
1897 SwitzerlandSwitzerland Switzerland Combe Garrot - Le Locle 12 km Direct current 14 kV R. Thury CIE
1897 SwitzerlandSwitzerland Switzerland Combe Garrot - La Chaux-de-Fonds 18 km Direct current
( Thury system )
14 kV R. Thury CIE
1901 SwitzerlandSwitzerland Switzerland St. Maurice - Lausanne 56 km Direct current
( Thury system )
27 kV 3680 kW Energy for the city R. Thury CIE
1906 FranceFrance France Lyon – Moûtiers 184 km Direct current
( Thury system )
57.6 kV 3500 kW tram R. Thury CIEM

Efficiency

Installation country Plant / route length Type of current Efficiency source
1882 GermanyGermany Germany Miesbach – Munich 57 km Direct current 22%
1883 FranceFrance France Vizille - Grenoble 14 km Direct current 67%
1886 SwitzerlandSwitzerland Switzerland Kriegstetten – Solothurn 8 kilometers Direct current 76%
1891 ItalyItaly Italy Isoverde - Sampierdarena 32.7 km Direct current

( Thury system )

72%
1891 GermanyGermany Germany Lauffen – Frankfurt 176 km Three-phase alternating current 68.5%
1893 SwitzerlandSwitzerland Switzerland Frinvillier - beaverist 28.5 km Direct current

( Thury system )

74.7%

Historical classification of the pioneering achievements

After the first distribution networks were established in 1882 , the desire to transmit electrical energy over greater distances soon arose. Marcel Depréz's first attempts were made using iron wires from telephone lines , which had a high electrical resistance , so that the efficiency was low. In the beginning, electrical energy transmission was in competition with other forms of energy transmission, such as cable transmission , compressed air lines or pressurized water lines . It was therefore first used in places where excess water power was available and steam engines were undesirable. The efficiency of the Kriegstetten – Solothurn direct current transmission was measured using mechanical measuring methods in order to convince even the skeptics of the high efficiency of electrical energy transmission. With the invention of the transformer , AC transmissions could be built from 1884 onwards. The first system to work with three-phase alternating current was Lauffen-Frankfurt , the first system with the frequency of 50 Hz commonly used in Europe today was Hochfelden - Oerlikon . In parallel to the development of transmission technology with alternating current, direct current transmission was further developed, since the regulation of this system was simpler and the voltage could be maintained better. The system developed by René Thury was used in several locations and is considered to be the forerunner of high-voltage direct current transmission .

literature

A. Riedler: Emil Rathenau and the development of large-scale economy . Julius Springer, Berlin 1916.

Remarks

  1. ^ First Edison power station in the world
  2. ^ First hydropower plant with Edison generators
  3. ^ First power station in Germany
  4. first attempt to transmit electrical energy over a long distance
  5. a b c The three plants of the Acquedotto de Ferrari-Galliera are summarized in the literature of and given a length of 60 km, although each of the three power plants operated an independent network. The length of 60 km corresponds to the network of the first two power plants Galvani and Volta , the specification of 95 km corresponds to the length of the networks of all three power plants.
  6. a b The plant was operated with a 48 km long ring line. The table only shows the distances between the power plant and the two customer cities.

Individual evidence

  1. ^ Grand Rapids Electric Light & Power Company. In: Powers Behind Grand Rapids. November 15, 2014, accessed December 9, 2019 .
  2. Berlin Historische Mitte (ed.): Germany's first electricity power station . ( berliner-historische-mitte.de [PDF]).
  3. a b c René Bied-Charreton: L'utilisation de l'énergie hydraulique. Ses origines, ses grandes étapes. In: Revue d'histoire des sciences et de leurs applications . tape 8 , no. 1 , 1955, ISSN  0048-7996 , pp. 60 , doi : 10.3406 / rhs.1955.3491 .
  4. ^ Christoph Zürcher: Fritz Blösch. In: Historical Lexicon of Switzerland , accessed on November 20, 2019 .
  5. Thury, René . Obituary. In: Schweizerische Bauzeitung . tape 112 , no. 5 , July 30, 1938, p. 57 , col. left .
  6. Sigfrido Leschiutta: Galileo Ferraris. Pp. 90-94 (Italian).;
  7. a b C. EL Brown: The electrical power transmission Kriegstetten-Solothurn . 1886, doi : 10.5169 / SEALS-13714 .
  8. a b c d Alberto Manzini: Eau et énergie: l'aqueduc de Ferrari Galliera dans le réseau des aqueducs de la ville de Gênes . In: e-Phaïstos . tape IV , no. 2 , October 1, 2015, ISSN  2262-7340 , p. 22-35 , doi : 10.4000 / ephaistos.736 .
  9. ^ Foris: Centrale de la Force . In: Le génie civil . tape 17 , no. 14 , August 2, 1890, p. 209-211 ( bnf.fr ).
  10. ^ A b Oregon City Falls AC Generator, 1889. In: The Oregon City History Project. 17th March 2018 .;
  11. ^ William Cawthorne Unwin: On the development and transmission of power from central stations . London and New York, Longmans, Green, 1894, pp. 290 ( archive.org ).
  12. ^ A b c Maria Pia Turbi: Le Centrali Idroelecttriche degli Acquedotti di Genova 1883–2008 . June 13, 2009, p. 9 ( cai.it [PDF]).
  13. ^ A b Giorgio Temporelli, Nicoletta Cassinelli: La storia dell'acqua a Genova . L'Acquedotto De Ferrari Galliera, p. 18th ff . ( fontanelle.org [PDF]).
  14. A. Denzler: The electrical power transmission of the paper mill Biberist (part 1) . 1893, doi : 10.5169 / SEALS-18175 .
  15. a b A. Denzler: The electrical power transmission of the Biberist paper mill (Part 2) . 1893, doi : 10.5169 / SEALS-18180 .
  16. a b c A. Denzler: The electricity works of La Chaux-de-Fonds and Locle . In: Schweizerische Bauzeitung . tape 25 , 20, 22 and 24, 1895.
  17. E. Mattern: The utilization of water power: Technical and economic basics . W. Engelmann, 1908, p. 325 ( archive.org ).
  18. G. Cauderay: Les installations électriques de la ville de Lausanne . 1922, p. 61, 63 , doi : 10.5169 / SEALS-37395 .
  19. ^ A. Rey: Transport d'énergie Moutiers-Lyon par courant continu à 50,000 volts . In: La Houille Blanche . No. October 10 , 1908, ISSN  0018-6368 , p. 229-235 , doi : 10.1051 / lhb / 1908068 .
  20. a b Richard Lössl: Three-phase current - the cornerstone of today's energy industry: Review of the 75th anniversary of the first large-scale power transmission between Lauffen aN and Frankfurt a. M. 1966, doi : 10.5169 / SEALS-68965 .
  21. Gugerli, David: Redeströme: for the electrification of Switzerland; 1880-1914 . Chronos, Zurich 1996, ISBN 3-905311-91-7 , p. 65 .
  22. ^ William Cawthorne Unwin: On the development and transmission of power from central stations . London and New York, Longmans, Green, 1894, pp. 240 ( archive.org ).