Hyperbolic cotangent graph
 
 Hyperbolic tangent  and hyperbolic cotangent  are hyperbolic functions  . They are also called hyperbolic  or hyperbolic tangent   or Hyperbelkotangens  or hyperbolic cotangent  . 
Spellings 
Hyperbolic tangent: 
  
    
      
        y 
        = 
        tanh 
        x 
       
     
    {\ displaystyle y = \ tanh \, x} 
   
  
 
Hyperbolic cotangent: 
  
    
      
        y 
        = 
        coth 
        x 
       
     
    {\ displaystyle y = \ coth \, x} 
   
  
 
 
Definitions 
  
    
      
        tanh 
         
        x 
        = 
        
          
            
              sinh 
               
              x 
             
            
              cosh 
               
              x 
             
           
         
        = 
        
          
            
              
                
                  e 
                 
                
                  x 
                 
               
              - 
              
                
                  e 
                 
                
                  - 
                  x 
                 
               
             
            
              
                
                  e 
                 
                
                  x 
                 
               
              + 
              
                
                  e 
                 
                
                  - 
                  x 
                 
               
             
           
         
        = 
        
          
            
              
                
                  e 
                 
                
                  2 
                  x 
                 
               
              - 
              1 
             
            
              
                
                  e 
                 
                
                  2 
                  x 
                 
               
              + 
              1 
             
           
         
        = 
        1 
        - 
        
          
            2 
            
              
                
                  e 
                 
                
                  2 
                  x 
                 
               
              + 
              1 
             
           
         
       
     
    {\ displaystyle \ tanh x = {\ frac {\ sinh x} {\ cosh x}} = {\ frac {\ mathrm {e} ^ {x} - \ mathrm {e} ^ {- x}} {\ mathrm {e} ^ {x} + \ mathrm {e} ^ {- x}}} = {\ frac {\ mathrm {e} ^ {2x} -1} {\ mathrm {e} ^ {2x} +1} } = 1 - {\ frac {2} {\ mathrm {e} ^ {2x} +1}}} 
   
 
  
    
      
        coth 
         
        x 
        = 
        
          
            
              cosh 
               
              x 
             
            
              sinh 
               
              x 
             
           
         
        = 
        
          
            
              
                
                  e 
                 
                
                  x 
                 
               
              + 
              
                
                  e 
                 
                
                  - 
                  x 
                 
               
             
            
              
                
                  e 
                 
                
                  x 
                 
               
              - 
              
                
                  e 
                 
                
                  - 
                  x 
                 
               
             
           
         
        = 
        
          
            
              
                
                  e 
                 
                
                  2 
                  x 
                 
               
              + 
              1 
             
            
              
                
                  e 
                 
                
                  2 
                  x 
                 
               
              - 
              1 
             
           
         
        = 
        1 
        + 
        
          
            2 
            
              
                
                  e 
                 
                
                  2 
                  x 
                 
               
              - 
              1 
             
           
         
       
     
    {\ displaystyle \ coth x = {\ frac {\ cosh x} {\ sinh x}} = {\ frac {\ mathrm {e} ^ {x} + \ mathrm {e} ^ {- x}} {\ mathrm {e} ^ {x} - \ mathrm {e} ^ {- x}}} = {\ frac {\ mathrm {e} ^ {2x} +1} {\ mathrm {e} ^ {2x} -1} } = 1 + {\ frac {2} {\ mathrm {e} ^ {2x} -1}}} 
   
  
Here and denote the hyperbolic sine  or  hyperbolic cosine  .
  
    
      
        sinh 
         
        x 
       
     
    {\ displaystyle \ sinh x} 
   
 
  
    
      
        cosh 
         
        x 
       
     
    {\ displaystyle \ cosh x} 
   
  
properties 
 
 
Hyperbolic tangent
 
Hyperbolic cotangent
 
 
Domain of definition 
 
  
    
      
        - 
        ∞ 
        < 
        x 
        < 
        + 
        ∞ 
       
     
    {\ displaystyle - \ infty <x <+ \ infty} 
   
  
  
    
      
        - 
        ∞ 
        < 
        x 
        < 
        + 
        ∞ 
       
     
    {\ displaystyle - \ infty <x <+ \ infty} 
   
 
  
    
      
        x 
        ≠ 
        0 
       
     
    {\ displaystyle x \ neq 0} 
   
  
 
Range of values 
 
  
    
      
        - 
        1 
        < 
        f 
        
          ( 
          x 
          ) 
         
        < 
        1 
       
     
    {\ displaystyle -1 <f \ left (x \ right) <1} 
   
  
  
    
      
        - 
        ∞ 
        < 
        f 
        
          ( 
          x 
          ) 
         
        < 
        - 
        1 
       
     
    {\ displaystyle - \ infty <f \ left (x \ right) <- 1} 
   
 
  
    
      
        1 
        < 
        f 
        
          ( 
          x 
          ) 
         
        < 
        + 
        ∞ 
       
     
    {\ displaystyle 1 <f \ left (x \ right) <+ \ infty} 
   
  
 
periodicity 
 
no
 
no
 
 
monotony 
 
strictly monotonously increasing
 
  
    
      
        x 
        < 
        0 
       
     
    {\ displaystyle x <0} 
   
 
  
    
      
        x 
        > 
        0 
       
     
    {\ displaystyle x> 0} 
   
  
 
Symmetries 
 
Point symmetry to the origin of coordinates
 
Point symmetry to the origin of coordinates
 
 
Asymptotes 
 
  
    
      
        x 
        → 
        + 
        ∞ 
        : 
        f 
        
          ( 
          x 
          ) 
         
        → 
        + 
        1 
       
     
    {\ displaystyle x \ to + \ infty \ colon f \ left (x \ right) \ to +1} 
   
 
  
    
      
        x 
        → 
        - 
        ∞ 
        : 
        f 
        
          ( 
          x 
          ) 
         
        → 
        - 
        1 
       
     
    {\ displaystyle x \ to - \ infty \ colon f \ left (x \ right) \ to -1} 
   
  
  
    
      
        x 
        → 
        + 
        ∞ 
        : 
        f 
        
          ( 
          x 
          ) 
         
        → 
        + 
        1 
       
     
    {\ displaystyle x \ to + \ infty \ colon f \ left (x \ right) \ to +1} 
   
 
  
    
      
        x 
        → 
        - 
        ∞ 
        : 
        f 
        
          ( 
          x 
          ) 
         
        → 
        - 
        1 
       
     
    {\ displaystyle x \ to - \ infty \ colon f \ left (x \ right) \ to -1} 
   
  
 
zeropoint 
 
  
    
      
        x 
        = 
        0 
       
     
    {\ displaystyle x = 0} 
   
  
no
 
 
Jump points 
 
no
 
no
 
 
Poles 
 
no
 
  
    
      
        x 
        = 
        0 
       
     
    {\ displaystyle x = 0} 
   
  
 
Extremes 
 
no
 
no
 
 
Turning points 
 
  
    
      
        
          ( 
          
            0 
            , 
            0 
           
          ) 
         
       
     
    {\ displaystyle \ left (0,0 \ right)} 
   
  
no
 
 
 
Special values The hyperbolic cotangent has two fixed points, i.e. i.e., there are two , so
  
    
      
        u 
        ∈ 
        
          R. 
         
       
     
    {\ displaystyle u \ in \ mathbb {R}} 
   
 
  
    
      
        coth 
        u 
        = 
        u 
       
     
    {\ displaystyle \ coth \, u = u} 
   
  They are included (sequence A085984  in  OEIS  )
  
    
      
        
          u 
          
            ± 
           
         
        = 
        ± 
        1,199 
        67864 
        ... 
       
     
    {\ displaystyle u _ {\ pm} = \ pm 1 {,} 19967864 \ dots} 
   
  
Inverse functions The hyperbolic tangent is a bijection   . The inverse function is  called the  hyperbolic areatangens  . It is defined for numbers  x  from the interval and takes all real numbers as a value. It can be expressed using the natural  logarithm  :
  
    
      
        tanh 
        : 
        
          R. 
         
        → 
        ( 
        - 
        1 
        , 
        1 
        ) 
       
     
    {\ displaystyle \ tanh \ colon \ mathbb {R} \ rightarrow (-1,1)} 
   
 
  
    
      
        ( 
        - 
        1 
        , 
        1 
        ) 
       
     
    {\ displaystyle (-1.1)} 
   
  
  
    
      
        artanh 
         
        x 
        = 
        
          
            1 
            2 
           
         
        ln 
         
        
          
            
              1 
              + 
              x 
             
            
              1 
              - 
              x 
             
           
         
        . 
       
     
    {\ displaystyle \ operatorname {artanh} x = {\ frac {1} {2}} \ ln {\ frac {1 + x} {1-x}}.} 
   
 The following applies to the inversion of the hyperbolic cotangent:
  
    
      
        arcoth 
         
        x 
        = 
        
          
            1 
            2 
           
         
        ln 
         
        
          
            
              x 
              + 
              1 
             
            
              x 
              - 
              1 
             
           
         
       
     
    {\ displaystyle \ operatorname {arcoth} x = {\ frac {1} {2}} \ ln {\ frac {x + 1} {x-1}}} 
   
 Derivatives 
  
    
      
        
          
            
              d 
             
            
              
                d 
               
              x 
             
           
         
        tanh 
         
        x 
        = 
        1 
        - 
        
          tanh 
          
            2 
           
         
         
        x 
        = 
        
          
            1 
            
              
                cosh 
                
                  2 
                 
               
               
              x 
             
           
         
        = 
        
          six 
          
            2 
           
         
         
        x 
       
     
    {\ displaystyle {\ frac} {\ mathrm {d} x}} \ tanh x = 1- \ tanh ^ {2} x = {\ frac {1} {\ cosh ^ {2} x }} = \ operatorname {six} ^ {2} x} 
   
 
  
    
      
        
          
            
              d 
             
            
              
                d 
               
              x 
             
           
         
        coth 
         
        x 
        = 
        1 
        - 
        
          coth 
          
            2 
           
         
         
        x 
        = 
        - 
        
          
            1 
            
              
                sinh 
                
                  2 
                 
               
               
              x 
             
           
         
        = 
        - 
        
          csch 
          
            2 
           
         
         
        x 
       
     
    {\ displaystyle {\ frac {\ mathrm {d}} {\ mathrm {d} x}} \ coth x = 1- \ coth ^ {2} x = - {\ frac {1} {\ sinh ^ {2} x}} = - \ operatorname {csch} ^ {2} x} 
   
  
The -th derivative is given by
  
    
      
        n 
       
     
    {\ displaystyle n} 
   
 
  
    
      
        
          
            
              
                d 
               
              
                n 
               
             
            
              
                d 
               
              
                z 
                
                  n 
                 
               
             
           
         
        tanh 
         
        z 
        = 
        
          
            
              
                2 
                
                  n 
                  + 
                  1 
                 
               
              
                
                  e 
                 
                
                  2 
                  z 
                 
               
             
            
              ( 
              1 
              + 
              
                
                  e 
                 
                
                  2 
                  z 
                 
               
              
                ) 
                
                  n 
                  + 
                  1 
                 
               
             
           
         
        
          ∑ 
          
            k 
            = 
            0 
           
          
            n 
            - 
            1 
           
         
        ( 
        - 
        1 
        
          ) 
          
            k 
           
         
        
          A. 
          
            n 
            , 
            k 
           
         
        
          
            e 
           
          
            2 
            k 
            z 
           
         
       
     
    {\ displaystyle {\ frac {\ mathrm {d} ^ {n}} {\ mathrm {d} z ^ {n}}} \ tanh z = {\ frac {2 ^ {n + 1} \ mathrm {e} ^ {2z}} {(1+ \ mathrm {e} ^ {2z}) ^ {n + 1}}} \ sum _ {k = 0} ^ {n-1} (- 1) ^ {k} A_ {n, k} \, \ mathrm {e} ^ {2kz}} 
   
 with the Euler numbers  A n, k  .
Addition theorem The addition theorem applies
  
    
      
        tanh 
         
        ( 
        α 
        + 
        β 
        ) 
        = 
        
          
            
              tanh 
               
              α 
              + 
              tanh 
               
              β 
             
            
              1 
              + 
              tanh 
               
              α 
              tanh 
               
              β 
             
           
         
       
     
    {\ displaystyle \ tanh (\ alpha + \ beta) = {\ frac {\ tanh \ alpha + \ tanh \ beta} {1+ \ tanh \ alpha \, \ tanh \ beta}}} 
   
 Similarly:
  
    
      
        coth 
         
        ( 
        α 
        + 
        β 
        ) 
        = 
        
          
            
              1 
              + 
              coth 
               
              α 
              coth 
               
              β 
             
            
              coth 
               
              α 
              + 
              coth 
               
              β 
             
           
         
       
     
    {\ displaystyle \ coth (\ alpha + \ beta) = {\ frac {1+ \ coth \ alpha \, \ coth \ beta} {\ coth \ alpha + \ coth \ beta}}} 
   
 Integrals 
  
    
      
        ∫ 
        tanh 
         
        x 
        
          d 
         
        x 
        = 
        ln 
         
        cosh 
         
        x 
        + 
        C. 
       
     
    {\ displaystyle \ int \ tanh x \, \ mathrm {d} x = \ ln \ cosh x + C} 
   
 
  
    
      
        ∫ 
        coth 
         
        x 
        
          d 
         
        x 
        = 
        ln 
         
        
          | 
         
        
          sinh 
           
          x 
         
        
          | 
         
        + 
        C. 
       
     
    {\ displaystyle \ int \ coth x \, \ mathrm {d} x = \ ln | {\ sinh x} | + C} 
   
  
Further representations Series developments 
  
    
      
        tanh 
         
        x 
        = 
        so-called 
         
        x 
        
          [ 
          
            1 
            + 
            
              ∑ 
              
                k 
                = 
                1 
               
              
                ∞ 
               
             
            ( 
            - 
            1 
            
              ) 
              
                k 
               
             
            2 
            
              
                e 
               
              
                - 
                2 
                k 
                
                  | 
                 
                x 
                
                  | 
                 
               
             
           
          ] 
         
       
     
    {\ displaystyle \ tanh x = \ operatorname {sgn} x \ left [1+ \ sum \ limits _ {k = 1} ^ {\ infty} (- 1) ^ {k} \, 2 \, \ mathrm {e } ^ {- 2k | x |} \ right]} 
   
 
  
    
      
        coth 
         
        x 
        = 
        
          
            1 
            x 
           
         
        + 
        
          ∑ 
          
            k 
            = 
            1 
           
          
            ∞ 
           
         
        
          
            
              2 
              x 
             
            
              
                k 
                
                  2 
                 
               
              
                π 
                
                  2 
                 
               
              + 
              
                x 
                
                  2 
                 
               
             
           
         
       
     
    {\ displaystyle \ coth x = {\ frac {1} {x}} + \ sum \ limits _ {k = 1} ^ {\ infty} {\ frac {2x} {k ^ {2} \ pi ^ {2 } + x ^ {2}}}} 
   
  
The beginning of the Taylor series of  the hyperbolic tangent is:
  
    
      
        tanh 
         
        x 
        = 
        
          ∑ 
          
            n 
            = 
            1 
           
          
            ∞ 
           
         
        ( 
        - 
        1 
        
          ) 
          
            n 
            - 
            1 
           
         
        ⋅ 
        
          
            
              
                2 
                
                  2 
                  n 
                 
               
              ( 
              
                2 
                
                  2 
                  n 
                 
               
              - 
              1 
              ) 
             
            
              ( 
              2 
              n 
              ) 
              ! 
             
           
         
        ⋅ 
        
          B. 
          
            2 
            n 
           
         
        ⋅ 
        
          x 
          
            2 
            n 
            - 
            1 
           
         
        = 
        x 
        - 
        
          
            1 
            3 
           
         
        
          x 
          
            3 
           
         
        + 
        
          
            2 
            15th 
           
         
        
          x 
          
            5 
           
         
        + 
        ⋯ 
       
     
    {\ displaystyle \ tanh x = \ sum \ limits _ {n = 1} ^ {\ infty} (- 1) ^ {n-1} \ cdot {\ frac {2 ^ {2n} (2 ^ {2n} - 1)} {(2n)!}} \ Cdot B_ {2n} \ cdot x ^ {2n-1} = x - {\ frac {1} {3}} x ^ {3} + {\ frac {2} {15}} x ^ {5} + \ cdots} 
   
 Those are the Bernoulli numbers  . The  radius of convergence of  this series is .
  
    
      
        
          B. 
          
            n 
           
         
       
     
    {\ displaystyle B_ {n}} 
   
 
  
    
      
        π 
        
          / 
         
        2 
       
     
    {\ displaystyle \ pi / 2} 
   
  
Continued fraction representation Johann Heinrich Lambert  showed the following formula:
  
    
      
        tanh 
         
        x 
        = 
        
          
            x 
            
              1 
              + 
              
                
                  
                    
                       
                    
                      
                        
                          x 
                          
                            2 
                           
                         
                       
                     
                   
                  
                    
                       
                    
                      
                        3 
                        + 
                        
                          
                            
                              
                                 
                              
                                
                                  
                                    x 
                                    
                                      2 
                                     
                                   
                                 
                               
                             
                            
                              
                                 
                              
                                
                                  5 
                                  + 
                                  ... 
                                 
                               
                             
                           
                         
                       
                     
                   
                 
               
             
           
         
       
     
    {\ displaystyle \ tanh x = {\ frac {x} {1 + {\ cfrac {x ^ {2}} {3 + {\ cfrac {x ^ {2}} {5+ \ ldots}}}}}} } 
   
 Numerical calculation Basically, the hyperbolic tangent can be calculated using the well-known formula
  
    
      
        tanh 
         
        x 
        = 
        
          
            
              
                
                  e 
                 
                
                  2 
                  x 
                 
               
              - 
              1 
             
            
              
                
                  e 
                 
                
                  2 
                  x 
                 
               
              + 
              1 
             
           
         
       
     
    {\ displaystyle \ tanh x = {\ frac {\ mathrm {e} ^ {2x} -1} {\ mathrm {e} ^ {2x} +1}}} 
   
 calculated if the exponential function is available. However, there are the following problems:
  
    
      
        
          
            e 
           
          
            x 
           
         
       
     
    {\ displaystyle {e} ^ {x}} 
   
 
Large positive operands trigger an overflow, although the end result can always be represented 
For operands close to 0 there is a numerical cancellation, which makes the result imprecise 
 
Case 1  : is a large positive number with :
  
    
      
        x 
       
     
    {\ displaystyle x} 
   
 
  
    
      
        
          x 
         
        > 
        k 
        ⋅ 
        
          
            
              ln 
               
              10 
             
            2 
           
         
       
     
    {\ displaystyle {x}> k \ cdot {\ frac {\ ln 10} {2}}} 
   
 
  
    
      
        tanh 
         
        x 
        = 
        + 
        1 
       
     
    {\ displaystyle \ tanh x = + 1} 
   
  where the number of significant decimal digits is the number type used, which is double  16 for the 64-bit floating point type .
  
    
      
        k 
       
     
    {\ displaystyle k} 
   
   Case 2  : is a small negative number with :
  
    
      
        x 
       
     
    {\ displaystyle x} 
   
 
  
    
      
        
          x 
         
        < 
        - 
        k 
        ⋅ 
        
          
            
              ln 
               
              10 
             
            2 
           
         
       
     
    {\ displaystyle {x} <- k \ cdot {\ frac {\ ln 10} {2}}} 
   
 
  
    
      
        tanh 
         
        x 
        = 
        - 
        1 
       
     
    {\ displaystyle \ tanh x = -1} 
   
 Case 3  : is close to 0, e.g. B. for :
  
    
      
        x 
       
     
    {\ displaystyle x} 
   
 
  
    
      
        - 
        0 
        
          , 
         
        1 
        < 
        x 
        < 
        + 
        0 
        
          , 
         
        1 
       
     
    {\ displaystyle -0 {,} 1 <x <+0 {,} 1} 
   
 
  
    
      
        tanh 
         
        x 
        = 
        
          
            
              sinh 
               
              x 
             
            
              
                
                  e 
                 
                
                  x 
                 
               
              - 
              sinh 
               
              x 
             
           
         
       
     
    {\ displaystyle \ tanh x = {\ frac {\ sinh x} {\ mathrm {e} ^ {x} - \ sinh x}}} 
   
 
  
    
      
        sinh 
         
        x 
       
     
    {\ displaystyle \ sinh x} 
   
 
  
    
      
        sinh 
         
        x 
        = 
        x 
        + 
        
          
            
              x 
              
                3 
               
             
            
              3 
              ! 
             
           
         
        + 
        
          
            
              x 
              
                5 
               
             
            
              5 
              ! 
             
           
         
        + 
        
          
            
              x 
              
                7th 
               
             
            
              7th 
              ! 
             
           
         
        + 
        ... 
       
     
    {\ displaystyle \ sinh x = x + {\ frac {x ^ {3}} {3!}} + {\ frac {x ^ {5}} {5!}} + {\ frac {x ^ {7}} {7!}} + \ Dots} 
   
  Case 4  : All others :
  
    
      
        x 
       
     
    {\ displaystyle x} 
   
 
  
    
      
        tanh 
         
        x 
        = 
        
          
            
              
                
                  e 
                 
                
                  2 
                  x 
                 
               
              - 
              1 
             
            
              
                
                  e 
                 
                
                  2 
                  x 
                 
               
              + 
              1 
             
           
         
       
     
    {\ displaystyle \ tanh x = {\ frac {\ mathrm {e} ^ {2x} -1} {\ mathrm {e} ^ {2x} +1}}} 
   
 Differential equation 
  
    
      
        tanh 
       
     
    {\ displaystyle \ tanh} 
   
 
  
    
      
        
          f 
          
            ′ 
           
         
        = 
        1 
        - 
        
          f 
          
            2 
           
         
       
     
    {\ displaystyle f ^ {\ prime} = 1-f ^ {2}} 
   
  
  
    
      
        
          
            1 
            2 
           
         
        
          f 
          
            ′ 
            ′ 
           
         
        = 
        
          f 
          
            3 
           
         
        - 
        f 
        = 
        f 
        ( 
        
          f 
          
            2 
           
         
        - 
        1 
        ) 
       
     
    {\ displaystyle {\ frac {1} {2}} f ^ {\ prime \ prime} = f ^ {3} -f = f (f ^ {2} -1)} 
   
 with and
  
    
      
        f 
        ( 
        0 
        ) 
        = 
        0 
       
     
    {\ displaystyle f (0) = 0} 
   
 
  
    
      
        
          f 
          
            ′ 
           
         
        ( 
        ∞ 
        ) 
        = 
        0 
       
     
    {\ displaystyle f ^ {\ prime} (\ infty) = 0} 
   
 
Complex arguments 
  
    
      
        tanh 
         
        ( 
        x 
        + 
        i 
        y 
        ) 
        = 
        
          
            
              sinh 
               
              ( 
              2 
              x 
              ) 
             
            
              cosh 
               
              ( 
              2 
              x 
              ) 
              + 
              cos 
               
              ( 
              2 
              y 
              ) 
             
           
         
        + 
        i 
        
          
            
              sin 
               
              ( 
              2 
              y 
              ) 
             
            
              cosh 
               
              ( 
              2 
              x 
              ) 
              + 
              cos 
               
              ( 
              2 
              y 
              ) 
             
           
         
       
     
    {\ displaystyle \ tanh (x + i \, y) = {\ frac {\ sinh (2x)} {\ cosh (2x) + \ cos (2y)}} + i \, {\ frac {\ sin (2y )} {\ cosh (2x) + \ cos (2y)}}} 
   
 
  
    
      
        tanh 
         
        ( 
        i 
        y 
        ) 
        = 
        i 
        tan 
         
        y 
       
     
    {\ displaystyle \ tanh (i \, y) = i \, \ tan y} 
   
 
  
    
      
        coth 
         
        ( 
        x 
        + 
        i 
        y 
        ) 
        = 
        
          
            
              sinh 
               
              ( 
              2 
              x 
              ) 
             
            
              cosh 
               
              ( 
              2 
              x 
              ) 
              - 
              cos 
               
              ( 
              2 
              y 
              ) 
             
           
         
        + 
        i 
        
          
            
              - 
              sin 
               
              ( 
              2 
              y 
              ) 
             
            
              cosh 
               
              ( 
              2 
              x 
              ) 
              - 
              cos 
               
              ( 
              2 
              y 
              ) 
             
           
         
       
     
    {\ displaystyle \ coth (x + i \, y) = {\ frac {\ sinh (2x)} {\ cosh (2x) - \ cos (2y)}} + i \, {\ frac {- \ sin ( 2y)} {\ cosh (2x) - \ cos (2y)}}} 
   
 
  
    
      
        coth 
         
        ( 
        i 
        y 
        ) 
        = 
        - 
        i 
        cot 
         
        y 
       
     
    {\ displaystyle \ coth (i \, y) = - i \, \ cot y} 
   
  
Applications in physics Tangent and cotangent hyperbolicus can be used to describe the time dependency of the speed  when falling with air resistance  or when throwing downwards, if a turbulent flow is  assumed for the flow  resistance  (  Newton friction  ). The coordinate system is placed in such a way that the location axis points upwards. A differential equation of the form with the  gravitational acceleration  g  and a constant  k  > 0 with the unit 1 / m then applies to the speed . There is then always a limit speed that is reached for, and the following applies:
  
    
      
        
          
            
              v 
              ˙ 
             
           
         
        = 
        - 
        G 
        + 
        k 
        
          v 
          
            2 
           
         
       
     
    {\ displaystyle {\ dot {v}} = - g + kv ^ {2}} 
   
 
  
    
      
        
          v 
          
            
              G 
             
           
         
        = 
        - 
        
          
            
              G 
              k 
             
           
         
        < 
        0 
       
     
    {\ displaystyle v _ {\ mathrm {g}} = - {\ sqrt {\ frac {g} {k}}} <0} 
   
 
  
    
      
        t 
        → 
        ∞ 
       
     
    {\ displaystyle t \ to \ infty} 
   
 
when falling or throwing downwards with an initial speed lower than the limit speed: with
  
    
      
        v 
        ( 
        t 
        ) 
        = 
        
          v 
          
            
              G 
             
           
         
        ⋅ 
        tanh 
         
        
          ( 
          
            
              
                G 
                k 
               
             
            t 
            + 
            c 
           
          ) 
         
       
     
    {\ displaystyle v (t) = v _ {\ mathrm {g}} \ cdot \ tanh \ left ({\ sqrt {gk}} t + c \ right)} 
   
 
  
    
      
        c 
        = 
        artanh 
         
        
          
            
              v 
              ( 
              0 
              ) 
             
            
              v 
              
                
                  G 
                 
               
             
           
         
        ≥ 
        0 
       
     
    {\ displaystyle c = \ operatorname {artanh} {\ frac {v (0)} {v _ {\ mathrm {g}}}} \ geq 0} 
   
  
when throwing downwards with an initial speed greater than the limit speed: with
  
    
      
        v 
        ( 
        t 
        ) 
        = 
        
          v 
          
            
              G 
             
           
         
        ⋅ 
        coth 
         
        
          ( 
          
            
              
                G 
                k 
               
             
            t 
            + 
            c 
           
          ) 
         
       
     
    {\ displaystyle v (t) = v _ {\ mathrm {g}} \ cdot \ coth \ left ({\ sqrt {gk}} t + c \ right)} 
   
 
  
    
      
        c 
        = 
        arcoth 
         
        
          
            
              v 
              ( 
              0 
              ) 
             
            
              v 
              
                
                  G 
                 
               
             
           
         
        > 
        0 
       
     
    {\ displaystyle c = \ operatorname {arcoth} {\ frac {v (0)} {v _ {\ mathrm {g}}}}> 0} 
   
  
 
   The hyperbolic tangent also describes the thermal occupation of a two-state system in quantum mechanics  : If n is  the total occupation of the two states and E is  their energy  difference, then the difference between the occupation numbers results , where the Boltzmann constant  and  T  the  is absolute temperature  .
  
    
      
        δ 
        n 
        = 
        n 
        ⋅ 
        tanh 
         
        
          
            E. 
            
              2 
              
                k 
                
                  
                    B. 
                   
                 
               
              T 
             
           
         
       
     
    {\ displaystyle \ delta n = n \ cdot \ tanh {\ frac {E} {2k _ {\ mathrm {B}} T}}} 
   
 
  
    
      
        
          k 
          
            
              B. 
             
           
         
       
     
    {\ displaystyle k _ {\ mathrm {B}}} 
   
   
  
    
      
        
          B. 
          
            J 
           
         
        ( 
        x 
        ) 
        = 
        
          
            1 
            J 
           
         
        
          [ 
          
            
              ( 
              
                J 
                + 
                
                  
                    1 
                    2 
                   
                 
               
              ) 
             
            coth 
             
            
              ( 
              
                J 
                x 
                + 
                
                  
                    x 
                    2 
                   
                 
               
              ) 
             
            - 
            
              
                1 
                2 
               
             
            coth 
             
            
              
                x 
                2 
               
             
           
          ] 
         
       
     
    {\ displaystyle B_ {J} (x) = {\ frac {1} {J}} \ left [\ left (J + {\ frac {1} {2}} \ right) \ coth \ left (J \, x + {\ frac {x} {2}} \ right) - {\ frac {1} {2}} \ coth {\ frac {x} {2}} \ right]} 
   
 The hyperbolic cotangent also occurs in cosmology  : the evolution of the Hubble parameter over time  in a flat universe that essentially contains only matter  and dark energy  (which is a good model for our actual universe) is described by , being a characteristic Is the time scale and the limit value of the Hubble parameter for is ( is the current value of the Hubble parameter, the density parameter  for dark energy). (This result is obtained easily from the temporal behavior of the scale parameter, consisting of the  Friedmann equations  can be derived.) The time dependence of the density parameter of dark energy on the other hand joins the hyperbolic tangent on .
  
    
      
        H 
        ( 
        t 
        ) 
        = 
        
          H 
          
            G 
           
         
        coth 
         
        
          
            t 
            
              t 
              
                c 
                H 
               
             
           
         
       
     
    {\ displaystyle H (t) = H_ {g} \ coth {\ frac {t} {t_ {ch}}}} 
   
 
  
    
      
        
          t 
          
            c 
            H 
           
         
        = 
        
          
            2 
            
              3 
              
                H 
                
                  G 
                 
               
             
           
         
       
     
    {\ displaystyle t_ {ch} = {\ frac {2} {3H_ {g}}}} 
   
 
  
    
      
        
          H 
          
            G 
           
         
        = 
        
          
            
              Ω 
              
                Λ 
                , 
                0 
               
             
           
         
        
          H 
          
            0 
           
         
       
     
    {\ displaystyle H_ {g} = {\ sqrt {\ Omega _ {\ Lambda, 0}}} H_ {0}} 
   
 
  
    
      
        t 
        → 
        ∞ 
       
     
    {\ displaystyle t \ to \ infty} 
   
 
  
    
      
        
          H 
          
            0 
           
         
       
     
    {\ displaystyle H_ {0}} 
   
 
  
    
      
        
          Ω 
          
            Λ 
            , 
            0 
           
         
       
     
    {\ displaystyle \ Omega _ {\ Lambda, 0}} 
   
 
  
    
      
        
          Ω 
          
            Λ 
           
         
        ( 
        t 
        ) 
        = 
        
          tanh 
          
            2 
           
         
         
        ( 
        t 
        
          / 
         
        
          t 
          
            c 
            H 
           
         
        ) 
       
     
    {\ displaystyle \ Omega _ {\ Lambda} (t) = \ tanh ^ {2} (t / t_ {ch})} 
   
   Web links  
<img src="https://de.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">