Platynereis dumerilii

from Wikipedia, the free encyclopedia
Platynereis dumerilii
Atoker worm from Platynereis dumerilii swimming in a petri dish

Atoker worm from Platynereis dumerilii swimming in a petri dish

Systematics
Subclass : Palpata
Order : Aciculata
Subordination : Phyllodocida
Family : Nereididae
Genre : Platynereis
Type : Platynereis dumerilii
Scientific name
Platynereis dumerilii
( Audouin & Milne Edwards , 1834)
Female epitoke of Platynereis dumerilii , colored yellow by the eggs it contains
Male epitoke of Platynereis dumerilii , stained white in front by sperm, stained red in back by blood containing hemoglobin

Platynereis dumerilii belongs to the group of bristle worms . The species was first classified in the genus Nereis and laterassigned to Platynereis . Platynereis dumerilii lives in temperate to tropical zones in coastal marine waters, and can be found in many places: In the Azores , in the Mediterranean , in the North Sea , in the English Channel and in the Atlantic all the way down to the Cape of Good Hope , in the Black Sea , in the The Red Sea , the Persian Gulf , the Japanese Sea , the Pacific and the Kerguelen . Platynereis dumerilii is an important laboratory animal today, is considered a living fossil and isviewed as a model organismfor many phylogenetic studies. Platynereis dumerilii is 3 to 18 months old, the males are 2 to 3 cm long, the females 3 to 4 cm.

Habitat

Platynereis dumerilii worms build living tubes on their substrate . The substrate may algae-covered hard floors, seagrass , rafts of pelagic Sargassum in the Sargasso Sea or even be rotting plant remains. Platynereis dumerilii usually lives at a depth of 0 to 5 m and is therefore typical of shallow, bright infra- littoral environments. But Platynereis dumerilii was also found on a buoy at 50 m and on rotting seaweed at 100 m and can also live in less favorable environments, such as. B. on hydrothermal smokers or in polluted areas near sewage discharges. Platynereis dumerilii dominates polluted and acidic areas with pH values ​​around 6.5. This is the preferred pH of a subpopulation of nectochaete larvae of Platynereis dumerilii .

Reproduction and development

Platynereis dumerilii is separate sexes : When mating , the male circles the female , while the female swims in small circles. Both add eggs and sperm into the water, which is triggered by sexual pheromones . The eggs are fertilized in the water outside the body . Like other nereidids, Platynereis dumerilii has no segmental gonads : the egg cells mature freely swimming in the body cavity ( coelom ) and color the body of the mature female yellow.

Platynereis dumerilii develops very stereotypically between clutches and therefore time can be used to determine the stage of the larvae of Platynereis dumerilii . However, the temperature greatly affects the development rate. Therefore the following development times apply to 18 ° C:

After 24 hours of hatching from a fertilized egg, a Trochophora larva, with 48 hours Metatrochophora is. Both trochophora and metatrochophora swim in the water with a lash line and are positive phototactic . In addition to the larval eyes, the Metatrochophora already has the facilities for the more complexly built definite eyes of the adult worm. One day later, at 72 hours, the metatrochophora becomes a nectochaete larva. The nectochaete larva already has three segments, each with a pair of parapodia that carry bristles that are used for locomotion. The nectochaete larva can switch between positive and negative phototaxis. Five to seven days after fertilization, the larvae begin to eat and develop at an individual speed depending on the food available. After three to four weeks, when six segments have been formed, the head forms with the antennae and mouthparts.

Photoreceptor cells

Platynereis dumerilii larvae have two types of photoreceptor cells : rhabdomeric and ciliary photoreceptor cells.

The ciliary photoreceptor cells are located deep in the larval brain. They are not shaded by pigment , so they perceive light from all sides. Molecularly and morphologically they resemble the cones and rods of the human eye and also express a ciliary opsin that is more similar to the visual ciliary opsins of the rods and cones of vertebrates than the visual rhabdomeric opsins of invertebrates. From this it is concluded that the Urbilaterium , the last common ancestor of molluscs , arthropods and vertebrates , already possessed ciliary phototreceptor cells. The ciliary opsin is UV- sensitive (λ max = 383 nm), therefore the ciliary photoreceptor cells react to undirected UV light and let the larvae swim downwards. This, with phototaxis from the rhabdomeric photoreceptor cells of the eyes, forms a color-based depth gauge .

A rhabdomeric photoreceptor cell and a pigment cell form a simple eye. A pair of these eyes mediate phototaxis in the early Trochophora larva of Platynereis dumerilii . In the later nectochaete larva, phototaxis is mediated by the more complex definite eyes. The definite eyes express at least three opsins: two rhabdomeric opsins and one go-opsin. The three opsins there mediate phototaxis all in the same way through depolarization, although a mussel go-opsin is known to hyperpolarize .

Genome

The genome of Platynereis dumerilii is diploid (2n chromosomes ) and has a haploid set of n = 14 chromosomes. It contains approximately 1 Gbp (gigabyte base pairs) or 10 9 base pairs. This genome size is close to the average observed for other animals. Compared to many classic invertebrate molecular model organisms , this genome is rather large and therefore a challenge to identify gene regulatory elements that may be far removed from the corresponding promoter . But it is intron-rich , unlike the genomes of Drosophila melanogaster and Caenorhabditis elegans, and consequently more closely resembles vertebrate genomes, including the human genome.

literature

  • Carl Hauenschild, Albrecht Fischer : Platynereis dumerilii. Gustav Fischer Verlag, 1969 ISBN 3-437-30097-0
  • Tilman Harder: Isolation and structure elucidation of a sex pheromone of the marine polychaete Platynereis dumerilii (Annelida, Polychaeta). Tectum Verlag, 1997 ISBN 3-89608-099-7

Visual media

  • Fischer, Albrecht (Mainz): The sea ringworm Platynereis dumerilii: A laboratory animal introduces itself. Jürgen Kaeding (camera, editor); Thomas Spielböck (DVD authoring); Verena Dietrich (editor); Walter Stickan (project leader). Dvd video; F, 26 min; available languages: mute. doi : 10.3203 / IWF / C-12740

Web links

Commons : Platynereis dumerilii  - collection of images, videos and audio files

Individual evidence

  1. a b c d e f g Antje HL Fischer, Thorsten Henrich, Detlev Arendt: The normal development of Platynereis dumerilii (Nereididae, Annelida) . In: Frontiers in Zoology . 7, No. 1, 2010, p. 31. doi : 10.1186 / 1742-9994-7-31 . PMID 21192805 . PMC 3027123 (free full text).
  2. ^ G. Read: Platynereis dumerilii (Audouin & Milne Edwards, 1834). In: Read, G .; Fauchald, K. (Ed.) (2015) . Retrieved November 26, 2015.
  3. ^ Jean Victoire Audouin, Henri Milne-Edwards: Néréide de Dumeril. Nereis dumerilii . In: Recherches pour servir a l'histoire naturelle du littoral de la France, ou, Recueil de mémoires sur l'anatomie, la physiologie, la classification et les moeurs des animaux des nos côtes: ouvrage accompagné de planches faites d'après nature . 2, 1834, pp. 196-199. doi : 10.5962 / bhl.title.43796 .
  4. a b Pierre Fauvel: Annélides polychètes non-pélagiques provenant des campagnes de l'Hirondelle et de la Princesse-Alice (1885-1910) . In: Résultats des campagnes scientifiques accompliés par le Prince Albert I . 46, 1914, pp. 1-432.
  5. a b Albrecht Fischer, Adriaan Dorresteijn: The polychaete Platynereis dumerilii (Annelida): a laboratory animal with spiralian cleavage, lifelong segment proliferation and a mixed benthic / pelagic life cycle . In: BioEssays . 26, No. 3, March 2004, pp. 314-325. doi : 10.1002 / bies.10409 . PMID 14988933 .
  6. Introduction - Encyclopedia of Life ( en ) Retrieved July 14, 2017.
  7. Living Fossil Platynereis dumerilii: Unraveling the first steps of eye evolution . December 3, 2008. Retrieved July 14, 2017.
  8. ^ Arendt Group - Evolution of the nervous system in bilateria - EMBL ( en ) Retrieved July 14, 2017.
  9. a b A. N. Jha, TH Hutchinson, JM Mackay, BM Elliott, PL Pascoe, DR Dixon: The chromosomes Of Platynereis dumerilii (Polychaeta: Nereidae) . In: Journal of the Marine Biological Association of the United Kingdom . 75, No. 03, 1995, p. 551. doi : 10.1017 / S002531540003900X .
  10. a b A. Giangrande: Polychaete zonation and its relation to algal distribution down a vertical cliff in the western Mediterranean (Italy): a structural analysis . In: Journal of Experimental Marine Biology and Ecology . 120, No. 3, September 1988, pp. 263-276. doi : 10.1016 / 0022-0981 (88) 90006-8 .
  11. ^ A b III, F. Graham Lewis, Allan W. Stoner: An Examination of Methods for Sampling Macrobenthos in Seagrass Meadows . In: Bulletin of Marine Science . 31, No. 1, Jan. 1, 1981, pp. 116-124.
  12. RPWM Jacobs, ES Pierson: Zostera marina spathes as a habitat for Platynereis dumerilii (Audouin and Milne-Edwards, 1834) . In: Aquatic Botany . January 6, 1979, pp. 403-406. doi : 10.1016 / 0304-3770 (79) 90079-2 .
  13. CL Huffard, S. von Thun, AD Sherman, K. Sealey, KL Smith: Pelagic Sargassum community change over a 40-year period: temporal and spatial variability . In: Marine Biology . 161, No. 12, September 14, 2014, pp. 2735-2751. doi : 10.1007 / s00227-014-2539-y . PMC 4231207 (free full text).
  14. ML Fine: Faunal variation on pelagic Sargassum . In: Marine Biology . 7, No. 2, October 1970, pp. 112-122. doi : 10.1007 / Bf00354914 .
  15. ^ RB Clark, A. Milne: The sublittoral fauna of two sandy bays on the Isle of Cumbrae, Firth of Clyde . In: Journal of the Marine Biological Association of the United Kingdom . 34, No. 01, 1955, p. 161. doi : 10.1017 / S0025315400008663 .
  16. ^ A b A. Giangrande, AL Delos, S. Fraschetti, L. Musco, M. Licciano, A. Terlizzi: Polychaete assemblages along a rocky shore on the South Adriatic coast (Mediterranean Sea): patterns of spatial distribution . In: Marine Biology . 143, No. 6, December 1, 2003, pp. 1109-1116. doi : 10.1007 / s00227-003-1162-0 .
  17. Maria Cristina Gambi, Maurizio Lorenti, Giovanni F. Russo, Maria Beatrice Scipione, Valerio Zupo: Depth and Seasonal Distribution of Some Groups of the Vagile Fauna of the Posidonia oceanica Leaf Stratum: Structural and Trophic Analyzes . In: Marine Ecology . 13, No. 1, March 1992, pp. 17-39. doi : 10.1111 / j.1439-0485.1992.tb00337.x .
  18. STEFANO ALIANI, ROBERTO MELONI: Dispersal strategies of benthic species and water current variability in the Corsica Channel (Western Mediterranean) . In: SCIENTIA MARINA . 63, No. 2, 1999, pp. 137-145. doi : 10.3989 / scimar.1999.63n2137 .
  19. ^ A. Cram, SM Evans: Stability and lability in the evolution of behavior in nereid polychaetes . In: Animal Behavior . 28, No. 2, May 1980, pp. 483-490. doi : 10.1016 / S0003-3472 (80) 80056-X .
  20. ^ F. Giménez, A. Marín: Los Anelidos poliquetos de una solfatara submarina en el Golfo de Napoles . In: Anales de Biología . 17, 1991, pp. 143-151.
  21. Noelle Marie Lucey, Chiara Lombardi, Lucia DeMarchi, Anja Schulze, Maria Cristina Gambi, Piero Calosi: To brood or not to brood: Are marine invertebrates that protect their offspring more resilient to ocean acidification? . In: Scientific Reports . 5, No. 1, July 9, 2015. doi : 10.1038 / srep12009 .
  22. Victor Surugiu, Marc Feunteun: The structure and distribution of polychaete populations Influenced by sewage from the Romanian coast of the Black Sea . In: Analele Ştiinţifice ale Universităţii “Al. I. Cuza ”Iaşi, s. Biology animală . LIV, 2008.
  23. ^ Gérard Bellan: Relationship of pollution to rocky substratum polychaetes on the French Mediterranean coast . In: Marine Pollution Bulletin . 11, No. 11, November 1980, pp. 318-321. doi : 10.1016 / 0025-326x (80) 90048-X .
  24. ^ L Musco, A Terlizzi, M Licciano, A Giangrande: Taxonomic structure and the effectiveness of surrogates in environmental monitoring: a lesson from polychaetes . In: Marine Ecology Progress Series . 383, May 14, 2009, pp. 199-210. doi : 10.3354 / meps07989 .
  25. Elena Ricevuto, KJ ​​Kroeker, F. Ferrigno, F. Micheli, MC Gambi: Spatio-temporal variability of polychaete colonization at volcanic CO2 vents indicates high tolerance to ocean acidification . In: Marine Biology . 161, No. 12, October 24, 2014, pp. 2909-2919. doi : 10.1007 / s00227-014-2555-y .
  26. Nirupama Ramanathan, Oleg Simakov, Christoph A. Merten, Detlev Arendt, Juan Carlos Molinero: Quantifying Preferences and Responsiveness of Marine Zooplankton to Changing Environmental Conditions using Microfluidics . In: PLOS ONE . 10, No. 10, October 30, 2015, p. E0140553. doi : 10.1371 / journal.pone.0140553 .
  27. ^ A b Albrecht Fischer: Reproductive and developmental phenomena in annelids: a source of exemplary research problems . In: Hydrobiologia . 402, 1999, pp. 1-20. doi : 10.1023 / A: 1003719906378 .
  28. Erich Zeeck, Tilman Harder, Manfred Beckmann: Uric acid: the sperm-release pheromone of the marine polychaete Platynereis dumerilii . In: Journal of Chemical Ecology . 24, No. 1, 1998, pp. 13-22. doi : 10.1023 / A: 1022328610423 .
  29. a b Gáspár Jékely, Julien Colombelli, Harald Hausen, Keren Guy, Ernst Stelzer, François Nédélec, Detlev Arendt: Mechanism of phototaxis in marine zooplankton . In: Nature . 456, No. 7220, November 20, 2008, pp. 395-399. doi : 10.1038 / nature07590 .
  30. a b Birgit Rhode: Development and differentiation of the eye in Platynereis dumerilii (Annelida, Polychaeta) . In: Journal of Morphology . 212, No. 1, April 1992, pp. 71-85. doi : 10.1002 / jmor.1052120108 .
  31. a b N. Randel, LA Bezares-Calderon, M. Gühmann, R. Shahidi, G. Jekely: Expression Dynamics and Protein Localization of Rhabdomeric Opsins in Platynereis Larvae . In: Integrative and Comparative Biology . 53, No. 1, May 10, 2013, pp. 7-16. doi : 10.1093 / icb / ict046 . PMID 23667045 . PMC 3687135 (free full text).
  32. a b Nadine Randel, Albina Asadulina, Luis A Bezares-Calderón, Csaba Verasztó, Elizabeth A Williams, Markus Conzelmann, Réza Shahidi, Gáspár Jékely: Neuronal connectome of a sensory-motor circuit for visual navigation . In: eLife . 3, May 27, 2014. doi : 10.7554 / eLife.02730 .
  33. D. Arendt, K. Tessmar-Raible, H. Snyman, AW Dorresteijn, J. Wittbrodt: ciliary Photoreceptors with a Vertebrate-type opsin in on Invertebrate Brain . In: Science . 306, No. 5697, October 29, 2004, pp. 869-871. doi : 10.1126 / science.1099955 . PMID 15514158 .
  34. Katja Seefeldt: Where Darwin Still Shuddered - Origin of the Human Eye (Telepolis, October 31, 2004)
  35. Keren Guy: Development and molecular characterization of the adult and larval eyes in Platynereis dumerilii (Polychaeta, Annelida, Lophotrochozoa) URN: urn: nbn: de: bsz: 16-opus-93070 University Library Heidelberg
  36. Hisao Tsukamoto, I-Shan Chen, Yoshihiro Kubo, Yuji Furutani: A ciliary opsin in the brain of a marine annelid zooplankton is ultraviolet-sensitive, and the sensitivity is tuned by a single amino acid residue . In: Journal of Biological Chemistry . 292, No. 31, August 4, 2017, pp. 12971–12980. doi : 10.1074 / jbc.M117.793539 . PMID 28623234 .
  37. Csaba Verasztó, Martin Gühmann, Huiyong Jia, Vinoth Babu Veedin Rajan, Luis A Bezares-Calderón, Cristina Piñeiro-Lopez, Nadine Randel, Réza Shahidi, Nico K Michiels, Shozo Yokoyama, Kristin Tessmar-Raible, Gáspár Jékdomeric and rhabdomeric : C photoreceptor-cell circuits form a spectral depth gauge in marine zooplankton . In: eLife . 7, 29 May 2018. doi : 10.7554 / eLife.36440 . PMID 29809157 .
  38. a b Martin Gühmann, Huiyong Jia, Nadine Randel, Csaba Verasztó, Luis A. Bezares-Calderón, Nico K. Michiels, Shozo Yokoyama, Gáspár Jékely: Spectral Tuning of Phototaxis by a Go-Opsin in the Rhabdomeric Eyes of Platynereis . In: Current Biology . 25, No. 17, August 2015, pp. 2265–2271. doi : 10.1016 / j.cub.2015.07.017 . PMID 26255845 .
  39. Daisuke Kojima, Akihisa Terakita, Toru Ishikawa, Yasuo Tsukahara, Akio Maeda, Yoshinori Shichida: A Novel Go-mediated Phototransduction Cascade in Scallop Visual Cells . In: The Journal of Biological Chemistry . 272, No. 37, September 12, 1997, pp. 22979-82. doi : 10.1074 / jbc.272.37.22979 . PMID 9287291 .
  40. ^ MP Gomez, E Nasi: Light transduction in invertebrate hyperpolarizing photoreceptors: possible involvement of a Go-regulated guanylate cyclase . In: Journal of Neuroscience . 20, No. 14, July 15, 2000, pp. 5254-63. PMID 10884309 .
  41. María Claudia Ipucha, Cinthya Gomes Santos, Paulo Da Cunha Lana, Ives José Sbalqueiro: Cytogenetic characterization of seven South American species of nereididae (annelida: polychaeta): implications for the karyotypic evolution . In: BAG. Journal of Basic and Applied Genetics . 18, No. 2, 2007.
  42. Juliane Zantke, Stephanie Bannister, Vinoth Babu Veedin Rajan, Florian Raible, Kristin Tessmar-Raible: Genetic and Genomic Tools for the Marine Annelid . In: Genetics . 197, No. 1, May 7, 2014, pp. 19-31. doi : 10.1534 / genetics.112.148254 . PMC 4012478 (free full text).
  43. Florian Raible, Kristin Tessmar-Raible, Kazutoyo Osoegawa, Patrick Wincker, Claire Jubin, Guillaume Balavoine, David Ferrier, Vladimir Benes, Pieter de Jong, Jean Weissenbach, Peer Bork, Detlev Arendt: Vertebrate-Type Intron-Rich Genes in the Marine Annelid Platynereis dumerilii . In: Science . 310, No. 5752, November 25, 2005, ISSN  0036-8075 , pp. 1325-1326. doi : 10.1126 / science.1119089 . PMID 16311335 .