IXPE: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Tags: Mobile edit Mobile web edit Advanced mobile edit
Rescuing 15 sources and tagging 0 as dead.) #IABot (v2.0.9.5
 
(41 intermediate revisions by 24 users not shown)
Line 1: Line 1:
{{Short description|NASA satellite of the Explorer program}}
{{Short description|NASA satellite of the Explorer program}}
{{Distinguish|X-ray Polarimeter Satellite}}
{{Distinguish|XPoSat}}
{{Use American English|date=June 2020}}
{{Use American English|date=June 2020}}
{{Use dmy dates|date=June 2020}}
{{Use dmy dates|date=June 2020}}
Line 15: Line 15:
| SATCAT = 49954
| SATCAT = 49954
| website = {{url|https://ixpe.msfc.nasa.gov/}}<br/>{{url|https://www.asi.it/en/planets-stars-universe/alte-energie/ixpe/|asi.it/ixpe}}
| website = {{url|https://ixpe.msfc.nasa.gov/}}<br/>{{url|https://www.asi.it/en/planets-stars-universe/alte-energie/ixpe/|asi.it/ixpe}}
| mission_duration = 2 years (planned)<br/>{{time interval|9 December 2021 06:00|show=ymd}} (''in progress'')
| mission_duration = 5 years (planned)<br/>{{time interval|9 December 2021 06:00|show=ymd}} (''in progress'')


| spacecraft = Explorer XCVII
| spacecraft = Explorer XCVII
Line 24: Line 24:
| payload_mass = {{cvt|170|kg}}
| payload_mass = {{cvt|170|kg}}
| dimensions = {{cvt|1.1|m}} in diameter and {{cvt|5.2|m}} tall, fully extended<br/>Solar array: {{cvt|2.7|m}} fully deployed
| dimensions = {{cvt|1.1|m}} in diameter and {{cvt|5.2|m}} tall, fully extended<br/>Solar array: {{cvt|2.7|m}} fully deployed
| power =
| power =


| launch_date = 9 December 2021, 06:00 [[Coordinated Universal Time|UTC]]<ref name="ixpe-home"/>
| launch_date = 9 December 2021, 06:00&nbsp;[[Coordinated Universal Time|UTC]]<ref name="ixpe-home"/>
| launch_rocket = [[Falcon 9]], [[List of Falcon 9 first-stage boosters#B1061|B1061.5]]
| launch_rocket = [[Falcon 9]], [[List of Falcon 9 first-stage boosters#B1061|B1061.5]]
| launch_site = [[Kennedy Space Center]], [[Kennedy Space Center Launch Complex 39A|LC-39A]]
| launch_site = [[Kennedy Space Center]], [[Kennedy Space Center Launch Complex 39A|LC-39A]]
| launch_contractor = [[SpaceX]]
| launch_contractor = [[SpaceX]]


| entered_service = 10 January 2022 <ref name="NSF20220110">{{cite web|url=https://www.nasaspaceflight.com/2022/01/ixpe-post-launch-update/|title=IXPE X-ray observatory completes commissioning, eyes Cassiopeia A for calibration|publisher=NASASpaceFlight.com|date=10 January 2022|access-date=11 January 2022}}</ref>
| entered_service = 10 January 2022<ref name="NSF20220110">{{cite web |url=https://www.nasaspaceflight.com/2022/01/ixpe-post-launch-update/ |title=IXPE X-ray observatory completes commissioning, eyes Cassiopeia A for calibration |publisher=NASASpaceFlight.com |date=10 January 2022 |access-date=11 January 2022 |archive-date=11 January 2022 |archive-url=https://web.archive.org/web/20220111001052/https://www.nasaspaceflight.com/2022/01/ixpe-post-launch-update/ |url-status=live }}</ref>
| deactivated =
| deactivated =
| last_contact =
| last_contact =
| decay_date =
| decay_date =


| orbit_reference = [[Geocentric orbit]]
| orbit_reference = [[Geocentric orbit]]
Line 48: Line 48:
| telescope_wavelength = [[X-ray astronomy|X-ray]]
| telescope_wavelength = [[X-ray astronomy|X-ray]]


| trans_band = [[S band|S-band]]<ref name="MSFC">{{cite web|url=https://ixpe.msfc.nasa.gov/about/IXPE_fact_sheet.pdf|title=IXPE Fact Sheet|publisher=NASA|date=2017}} {{PD-notice}}</ref>
| trans_band = [[S band|S-band]]<ref name="MSFC">{{cite web |url=https://ixpe.msfc.nasa.gov/about/IXPE_fact_sheet.pdf |title=IXPE Fact Sheet |publisher=NASA |date=2017 |access-date=2 February 2018 |archive-date=2 April 2019 |archive-url=https://web.archive.org/web/20190402164403/https://ixpe.msfc.nasa.gov/about/IXPE_fact_sheet.pdf |url-status=live }} {{PD-notice}}</ref>


| insignia = Imaging X-ray Polarimetry Explorer (IXPE) logo.png
| insignia = Imaging X-ray Polarimetry Explorer (IXPE) logo.png
Line 54: Line 54:
| insignia_size = 250px
| insignia_size = 250px


| programme = '''Explorer Program'''
| programme = '''Explorers Program'''
| previous_mission = [[Ionospheric Connection Explorer|ICON]] (Explorer 96)
| previous_mission = [[Ionospheric Connection Explorer|ICON]] (Explorer 96)
| next_mission = [[Polarimeter to Unify the Corona and Heliosphere|PUNCH]] and [[Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites|TRACERS]]
| next_mission = [[Polarimeter to Unify the Corona and Heliosphere|PUNCH]] and [[Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites|TRACERS]]
}}
}}


'''Imaging X-ray Polarimetry Explorer''', commonly known as '''IXPE''' or [[Explorer program|'''SMEX-14''']], is a [[space observatory]] with three identical telescopes designed to measure the [[Polarization (waves)|polarization]] of [[X-ray astronomy|cosmic X-rays]] of black holes, neutron stars, and pulsars.<ref name="NASA News">{{cite web |url=https://www.nasa.gov/press-release/nasa-selects-mission-to-study-black-holes-cosmic-x-ray-mysteries |title=NASA Selects Mission to Study Black Holes, Cosmic X-ray Mysteries |publisher=NASA |date=3 January 2017 |access-date=6 December 2021 |archive-date=8 December 2021 |archive-url=https://web.archive.org/web/20211208080537/https://www.nasa.gov/press-release/nasa-selects-mission-to-study-black-holes-cosmic-x-ray-mysteries/ |url-status=live }} {{PD-notice}}</ref> The observatory, which was launched on 9&nbsp;December 2021, is an international collaboration between [[NASA]] and the [[Italian Space Agency]] (ASI). It is part of NASA's Explorers program, which designs low-cost spacecraft to study heliophysics and astrophysics.
[[File:Images from IXPE Prelaunch press conference 03.jpg|thumb|upright=1.0|right|IXPE in launch configuration]]


The mission will study exotic astronomical objects and permit mapping of the magnetic fields of [[black hole]]s, [[neutron star]]s, [[pulsar]]s, [[supernova remnant]]s, [[magnetar]]s, [[quasar]]s, and [[active galactic nuclei]]. The high-energy [[X-ray]] radiation from these objects' surrounding environment can be polarized{{snd}} oscillating in a particular direction. Studying the polarization of X-rays reveals the physics of these objects and can provide insights into the high-temperature environments where they are created.<ref name='Foust2017'>{{cite web |url=https://spacenews.com/nasa-selects-x-ray-astronomy-mission/ |title=NASA selects X-ray astronomy mission |publisher=SpaceNews |date=4 January 2017 |access-date=9 December 2021 |archive-date=30 April 2024 |archive-url=https://web.archive.org/web/20240430214642/https://spacenews.com/nasa-selects-x-ray-astronomy-mission/ |url-status=live }}</ref>
'''Imaging X-ray Polarimetry Explorer''', commonly known as '''IXPE''' or [[Explorer program|'''SMEX-14''']], is a [[space observatory]] with three identical telescopes designed to measure the [[Polarization (waves)|polarization]] of [[X-ray astronomy|cosmic X-rays]] of black holes, neutron stars, and pulsars.<ref name="NASA News">{{cite web|url=https://www.nasa.gov/press-release/nasa-selects-mission-to-study-black-holes-cosmic-x-ray-mysteries|title=NASA Selects Mission to Study Black Holes, Cosmic X-ray Mysteries|publisher=NASA|date=3 January 2017|access-date=6 December 2021}} {{PD-notice}}</ref> The observatory, which was launched 9 December 2021, is an international collaboration between [[NASA]] and the [[Italian Space Agency]] (ASI). It is part of NASA's Explorers program, which designs low cost spacecraft to study heliophysics and astrophysics.

The mission will study exotic astronomical objects and permit mapping the magnetic fields of [[black hole]]s, [[neutron star]]s, [[pulsar]]s, [[supernova remnant]]s, [[magnetar]]s, [[quasar]]s, and [[active galactic nuclei]]. The high-energy [[X-ray]] radiation from these objects' surrounding environment can be polarized – vibrating in a particular direction. Studying the polarization of X-rays reveals the physics of these objects and can provide insights into the high-temperature environments where they are created.<ref name='Foust2017'>{{cite web|url=https://spacenews.com/nasa-selects-x-ray-astronomy-mission/ |title=NASA selects X-ray astronomy mission|publisher=SpaceNews|date=4 January 2017|access-date=9 December 2021}}</ref>


== Overview ==
== Overview ==
[[File:Ixpe 009.jpg|thumb|upright=1.0|right|NASA's Imaging X-ray Polarimetry Explorer (IXPE) mission is the first satellite dedicated to measuring the polarization of X-rays from a variety of cosmic sources, such as black holes and neutron stars.]]
[[File:Ixpe 009.jpg|thumb|upright=1.0|right|Illustration of IXPE]]
[[File:IXPE deploying.webm|thumb|upright=1.0|right|IXPE deploying]]


The IXPE mission was announced on 3 January 2017<ref name="NASA News"/> and was launched on 9 December 2021.<ref name="ixpe-home"/> The international collaboration was signed on June 2017<ref name=eoPortal/> where the [[Italian Space Agency]] (ASI) committed to provide the X-ray [[Polarization (waves)|polarization]] detectors.<ref name='Foust2017'/> The estimated cost of the mission and its two-year operation is US$188 million (the launch cost is US$50.3 million).<ref name=sfn-20190708>{{cite news|url=https://spaceflightnow.com/2019/07/08/spacex-wins-nasa-contract-to-launch-x-ray-telescope-on-reused-rocket/ |title=SpaceX wins NASA contract to launch X-ray telescope on reused rocket|last=Clark|first=Stephen|publisher=Spaceflight Now|date=8 July 2019|access-date=9 December 2021}}</ref><ref name='Foust2017'/> The goal of the IXPE mission is to expand understanding of high-energy [[Astrophysics|astrophysical processes]] and sources, in support of NASA's first science objective in astrophysics: "Discover how the universe works".<ref name=eoPortal/> By obtaining X-ray polarimetry and polarimetric imaging of cosmic sources, IXPE addresses two specific science objectives: to determine the radiation processes and detailed properties of specific cosmic X-ray sources or categories of sources; and to explore [[General relativity|general relativistic]] and [[Quantum mechanics|quantum effects]] in extreme environments.<ref name=eoPortal/><ref name="NASA News"/>
The IXPE mission was announced on 3&nbsp;January 2017<ref name="NASA News"/> and was launched on 9&nbsp;December 2021.<ref name="ixpe-home"/> The international collaboration was signed in June 2017,<ref name=eoPortal/> when the [[Italian Space Agency]] (ASI) committed to provide the X-ray [[Polarization (waves)|polarization]] detectors.<ref name='Foust2017'/> The estimated cost of the mission and its two-year operation is US$188&nbsp;million (the launch cost is US$50.3&nbsp;million).<ref name=sfn-20190708>{{cite news |url=https://spaceflightnow.com/2019/07/08/spacex-wins-nasa-contract-to-launch-x-ray-telescope-on-reused-rocket/ |title=SpaceX wins NASA contract to launch X-ray telescope on reused rocket |last=Clark |first=Stephen |publisher=Spaceflight Now |date=8 July 2019 |access-date=9 December 2021 |archive-date=2 January 2022 |archive-url=https://web.archive.org/web/20220102102607/https://spaceflightnow.com/2019/07/08/spacex-wins-nasa-contract-to-launch-x-ray-telescope-on-reused-rocket/ |url-status=live }}</ref><ref name='Foust2017'/> The goal of the IXPE mission is to expand understanding of high-energy [[Astrophysics|astrophysical processes]] and sources, in support of NASA's first science objective in astrophysics: "Discover how the universe works".<ref name=eoPortal/> By obtaining X-ray polarimetry and polarimetric imaging of cosmic sources, IXPE addresses two specific science objectives: to determine the radiation processes and detailed properties of specific cosmic X-ray sources or categories of sources; and to explore [[General relativity|general relativistic]] and [[Quantum mechanics|quantum effects]] in extreme environments.<ref name=eoPortal/><ref name="NASA News"/>


During IXPE's two-year mission, it will study targets such as [[Active galactic nucleus|active galactic nuclei]], [[quasar]]s, [[pulsar]]s, [[pulsar wind nebula]]e, [[magnetar]]s, [[X-ray binary|accreting X-ray binaries]], [[supernova remnant]]s, and the [[Galactic Center]].<ref name='Weisskopf 2016'/>
During IXPE's two-year mission, it will study targets such as [[Active galactic nucleus|active galactic nuclei]], [[quasar]]s, [[pulsar]]s, [[pulsar wind nebula]]e, [[magnetar]]s, [[X-ray binary|accreting X-ray binaries]], [[supernova remnant]]s, and the [[Galactic Center]].<ref name='Weisskopf 2016'/>


The spacecraft was built by [[Ball Aerospace & Technologies]].<ref name=eoPortal>{{cite web|url=https://directory.eoportal.org/web/eoportal/satellite-missions/i/ixpe|title=IXPE (Imaging X-ray Polarimetry Explorer)|website=eoportal.com|publisher=ESA|access-date=17 February 2019}}</ref> The principal investigator is [[Martin C. Weisskopf]] of NASA [[Marshall Space Flight Center]]; he is the chief scientist for [[X-ray astronomy]] at NASA's Marshall Space Flight Center and project scientist for the [[Chandra X-ray Observatory]] spacecraft.<ref name='Foust2017'/>
The spacecraft was built by [[Ball Aerospace & Technologies]].<ref name=eoPortal>{{cite web |url=https://directory.eoportal.org/web/eoportal/satellite-missions/i/ixpe |title=IXPE (Imaging X-ray Polarimetry Explorer) |website=eoportal.com |publisher=ESA |access-date=17 February 2019 |archive-date=30 April 2024 |archive-url=https://web.archive.org/web/20240430214643/https://www.eoportal.org/satellite-missions/ixpe |url-status=live }}</ref> The principal investigator is [[Martin C.&nbsp;Weisskopf]] of NASA [[Marshall Space Flight Center]]; he is the chief scientist for [[X-ray astronomy]] at NASA's Marshall Space Flight Center and project scientist for the [[Chandra X-ray Observatory]] spacecraft.<ref name='Foust2017'/>


Other partners include the [[McGill University]], [[Massachusetts Institute of Technology]] (MIT), [[Roma Tre University]], [[Stanford University]]<ref name="MSFC"/> and [[OHB SE|OHB Italia]].<ref name="SpaceFoundation">{{cite web|url=https://www.spacefoundation.org/tech_track_papers/advanced-observatory-design-for-the-imaging-x-ray-polarimeter-explorer-ixpe-mission|title=Advanced Observatory Design for the Imaging X-Ray Polarimeter Explorer (IXPE) Mission|publisher=Space Foundation|date=2018|access-date=10 December 2021}}</ref>
Other partners include the [[McGill University]], [[Massachusetts Institute of Technology]] (MIT), [[Roma Tre University]], [[Stanford University]],<ref name="MSFC"/> [[OHB SE|OHB Italia]]<ref name="SpaceFoundation">{{cite web |url=https://www.spacefoundation.org/tech_track_papers/advanced-observatory-design-for-the-imaging-x-ray-polarimeter-explorer-ixpe-mission |title=Advanced Observatory Design for the Imaging X-Ray Polarimeter Explorer (IXPE) Mission |publisher=Space Foundation |date=2018 |access-date=10 December 2021 |archive-date=9 December 2021 |archive-url=https://web.archive.org/web/20211209112424/https://www.spacefoundation.org/tech_track_papers/advanced-observatory-design-for-the-imaging-x-ray-polarimeter-explorer-ixpe-mission/ |url-status=live }}</ref> and the [[University of Colorado Boulder]].<ref>{{Cite web |date=2022-01-18 |title=Students operate $214M spacecraft. 'It's like what you see in the movies.' |url=https://www.colorado.edu/today/2022/IXPE-mission-operations |access-date=2022-08-02 |website=CU Boulder Today |language=en |archive-date=2 August 2022 |archive-url=https://web.archive.org/web/20220802220741/https://www.colorado.edu/today/2022/IXPE-mission-operations |url-status=live }}</ref>


== Objectives ==
== Objectives ==
The technical and science objectives include:<ref name="ixpe-home">{{cite web|url=https://ixpe.msfc.nasa.gov/index.html|title=IXPE Home: Expanding the X-ray View of the Universe|work=Marshall Space Flight Center (MSFC)|publisher=NASA|date=7 September 2021|access-date=15 September 2021}} {{PD-notice}}</ref>
The technical and science objectives include:<ref name="ixpe-home">{{cite web|url=https://ixpe.msfc.nasa.gov/index.html|title=IXPE Home: Expanding the X-ray View of the Universe|work=Marshall Space Flight Center (MSFC)|publisher=NASA|date=7 September 2021|access-date=15 September 2021|archive-date=2 October 2021|archive-url=https://web.archive.org/web/20211002110732/https://ixpe.msfc.nasa.gov/index.html|url-status=live}} {{PD-notice}}</ref>
* Improve polarization sensitivity by two orders of magnitude over the X-ray [[polarimeter]] aboard the [[Orbiting Solar Observatory|Orbiting Solar Observatory 8]]
* Improve polarization sensitivity by two orders of magnitude over the X-ray [[polarimeter]] aboard the [[Orbiting Solar Observatory|Orbiting Solar Observatory 8]]
* Provide simultaneous spectral, spatial, and temporal measurements
* Provide simultaneous spectral, spatial, and temporal measurements
Line 87: Line 84:


== Telescopes ==
== Telescopes ==
The space observatory features three identical telescopes designed to measure the [[Polarization (waves)|polarization]] of [[X-ray astronomy|cosmic X-rays]].<ref name="NASA News"/> The polarization sensitive detector was invented and developed by Italian scientists of the [[INAF|Istituto Nazionale di AstroFisica]] (INAF) and the [[Istituto Nazionale di Fisica Nucleare]] (INFN) and was refined over several years.<ref name='Weisskopf 2016'>{{cite journal|doi=10.1016/j.rinp.2016.10.021|title=The Imaging X-ray Polarimetry Explorer (IXPE)|journal=Results in Physics|volume=6|pages=1179–1180|year=2016|last1=Weisskopf |first1=Martin C.|last2=Ramsey|first2=Brian|last3=o'Dell|first3=Stephen L.|last4=Tennant|first4=Allyn|last5=Elsner|first5=Ronald|last6=Soffitta|first6=Paolo|last7=Bellazzini|first7=Ronaldo|last8=Costa |first8=Enrico|last9=Kolodziejczak|first9=Jeffery|last10=Kaspi|first10=Victoria|last11=Muleri|first11=Fabio|last12=Marshall|first12=Herman|last13=Matt|first13=Giorgio|last14=Romani|first14=Roger|bibcode=2016ResPh...6.1179W|doi-access=free|date=31 October 2016}}</ref><ref name='Costa 2001'>{{cite journal|doi=10.1038/35079508|arxiv=astro-ph/0107486|title=An efficient photoelectric X-ray polarimeter for the study of black holes and neutron stars|journal=Nature |volume=411|pages=662–665|year=2001|last1=Costa|first1=Enrico|last2=Soffitta|first2=Paolo|last3=Bellazzini|first3=Ronaldo|last4=Brez|first4=Alessandro |last5=Lumb|first5=Nicholas|last6=Spandre|first6=Gloria|issue=6838|pmid=11395761|bibcode=2001Natur.411..662C|s2cid=4348577|url=http://cds.cern.ch/record/511427}}</ref><ref name='Bellazzini 2007'>{{cite journal |doi=10.1016/j.nima.2007.05.304|title=A sealed Gas Pixel Detector for X-ray astronomy|journal=Nuclear Instruments and Methods in Physics Research Section A|volume=592|issue=2|pages=853–858|year=2017 |last1=Bellazzini|first1=R.|last2=Spandre|first2=G.|last3=Minuti|first3=M.|last4=Baldini|first4=L.|last5=Brez|first5=A.|last6=Latronico|first6=L.|last7=Omodei|first7=N.|last8=Razzano|first8=M.|last9=Massai |first9=M. M.|last10=Pesce-Rollins|first10=M.|last11=Sgrò|first11=C.|last12=Costa|first12=E.|last13=Soffitta|first13=P.|last14=Sipila|first14=H.|last15=Lempinen|first15=E.|bibcode=2007NIMPA.579..853B |arxiv=astro-ph/0611512|s2cid=119036804}}</ref>
The space observatory features three identical telescopes designed to measure the [[Polarization (waves)|polarization]] of [[X-ray astronomy|cosmic X-rays]].<ref name="NASA News"/> The polarization-sensitive detector was invented and developed by Italian scientists of the [[INAF|Istituto Nazionale di AstroFisica]] (INAF) and the [[Istituto Nazionale di Fisica Nucleare]] (INFN) and was refined over several years.<ref name='Weisskopf 2016'>{{cite journal |doi=10.1016/j.rinp.2016.10.021 |title=The Imaging X-ray Polarimetry Explorer (IXPE) |journal=Results in Physics |volume=6 |pages=1179–1180 |last1=Weisskopf |first1=Martin C. |last2=Ramsey |first2=Brian |last3=o'Dell |first3=Stephen L. |last4=Tennant |first4=Allyn |last5=Elsner |first5=Ronald |last6=Soffitta |first6=Paolo |last7=Bellazzini |first7=Ronaldo |last8=Costa |first8=Enrico |last9=Kolodziejczak |first9=Jeffery |last10=Kaspi |first10=Victoria |last11=Muleri |first11=Fabio |last12=Marshall |first12=Herman |last13=Matt |first13=Giorgio |last14=Romani |first14=Roger |bibcode=2016ResPh...6.1179W |doi-access=free |date=31 October 2016|hdl=2060/20160007987 |hdl-access=free }}</ref><ref name='Costa 2001'>{{cite journal |doi=10.1038/35079508 |arxiv=astro-ph/0107486 |title=An efficient photoelectric X-ray polarimeter for the study of black holes and neutron stars |journal=Nature |volume=411 |pages=662–665 |year=2001 |last1=Costa |first1=Enrico |last2=Soffitta |first2=Paolo |last3=Bellazzini |first3=Ronaldo |last4=Brez |first4=Alessandro |last5=Lumb |first5=Nicholas |last6=Spandre |first6=Gloria |issue=6838 |pmid=11395761 |bibcode=2001Natur.411..662C |s2cid=4348577 |url=https://cds.cern.ch/record/511427}}</ref><ref name='Bellazzini 2007'>{{cite journal |doi=10.1016/j.nima.2007.05.304 |title=A sealed Gas Pixel Detector for X-ray astronomy |journal=Nuclear Instruments and Methods in Physics Research Section A |volume=592 |issue=2 |pages=853–858 |year=2017 |last1=Bellazzini |first1=R. |last2=Spandre |first2=G. |last3=Minuti |first3=M. |last4=Baldini |first4=L. |last5=Brez |first5=A. |last6=Latronico |first6=L. |last7=Omodei |first7=N. |last8=Razzano |first8=M. |last9=Massai |first9=M. M. |last10=Pesce-Rollins |first10=M. |last11=Sgrò |first11=C. |last12=Costa |first12=E. |last13=Soffitta |first13=P. |last14=Sipila |first14=H. |last15=Lempinen |first15=E. |bibcode=2007NIMPA.579..853B |arxiv=astro-ph/0611512 |s2cid=119036804}}</ref>


{| class="wikitable"
{| class="wikitable"
! Telescope (×3) !! Basic parameters
|-
! Telescope (x3) !! Basic parameters
|-
|-
| Wavelength || [[X-ray astronomy|X-ray]]
| Wavelength || [[X-ray astronomy|X-ray]]
Line 103: Line 99:


=== Principle ===
=== Principle ===
IXPE's payload is a set of three identical imaging X-ray polarimetry systems mounted on a common optical bench and co-aligned with the pointing axis of the spacecraft.<ref name=eoPortal/> Each system operates independently for redundancy, and comprises a {{cvt|4|m}} focal length mirror module assembly that focuses X-rays onto a polarization-sensitive imaging [[X-ray astronomy detector|detector]] developed in [[Italy]].<ref name=eoPortal/> The focal length is achieved using a deployable boom.
IXPE's payload is a set of three identical imaging X-ray polarimetry systems mounted on a common optical bench and co-aligned with the pointing axis of the spacecraft.<ref name=eoPortal/> Each system operates independently for redundancy and comprises a mirror module assembly that focuses X-rays onto a polarization-sensitive imaging [[X-ray astronomy detector|detector]] developed in Italy.<ref name=eoPortal/> The {{cvt|4|m}} focal length is achieved using a deployable boom.


The Gas Pixel Detectors (GPD) utilize the [[anisotropy]] of the emission direction of [[Photoelectric effect|photoelectrons]] produced by polarized photons to gauge with high sensitivity the polarization state of X-rays interacting in a gaseous medium.<ref name='Weisskopf 2016'/> Position-dependent and energy-dependent polarization maps of such synchrotron-emitting sources will reveal the magnetic field structure of the X-ray emitting regions. X-ray polarimetric imaging better indicates the magnetic structure in regions of strong electron acceleration. The system is capable to resolve point sources from surrounding [[Emission nebula|nebular emission]] or from adjacent point sources.<ref name='Weisskopf 2016'/>
The Gas Pixel Detectors (GPD),<ref>{{Cite journal |last1=Soffitta |first1=Paolo |last2=Costa |first2=Enrico |last3=di Persio |first3=Giuseppe |last4=Morelli |first4=Ennio |last5=Rubini |first5=Alda |last6=Bellazzini |first6=Ronaldo |last7=Brez |first7=Alessandro |last8=Raffo |first8=Renzo |last9=Spandre |first9=Gloria |last10=Joy |first10=David |date=2001-08-11 |title=Astronomical X-ray polarimetry based on photoelectric effect with microgap detectors |url=https://linkinghub.elsevier.com/retrieve/pii/S0168900201007720 |journal=Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment |language=en |volume=469 |issue=2 |pages=164–184 |doi=10.1016/S0168-9002(01)00772-0 |arxiv=astro-ph/0012183 |bibcode=2001NIMPA.469..164S |access-date=14 January 2024 |archive-date=17 June 2022 |archive-url=https://web.archive.org/web/20220617214933/https://linkinghub.elsevier.com/retrieve/pii/S0168900201007720 |url-status=live }}</ref> a type of [[Micropattern gaseous detector]], rely on the [[anisotropy]] of the emission direction of [[Photoelectric effect|photoelectrons]] produced by polarized photons to gauge with high sensitivity the polarization state of X-rays interacting in a gaseous medium.<ref name='Weisskopf 2016'/> Position-dependent and energy-dependent polarization maps of such [[synchrotron radiation|synchrotron-emitting]] sources will reveal the magnetic-field structure of the X-ray emitting regions. X-ray polarimetric imaging better indicates the magnetic structure in regions of strong electron acceleration. The system is capable to resolve [[point source]]s from surrounding [[Emission nebula|nebular emission]] or from adjacent point sources.<ref name='Weisskopf 2016'/>


== Launch profile ==
== Launch profile ==
[[File:IXPE Prelaunch.jpg|thumb|upright=1.0|right|IXPE inside payload fairing]]
[[File:IXPE Launch (NHQ202112090001).jpg|thumb|upright=1.0|right|IXPE launch]]
[[File:IXPE Launch (NHQ202112090001).jpg|thumb|upright=1.0|right|IXPE launch]]
[[File:IXPE deployment and solar arrays unfurling 06.jpg|thumb|upright=1.0|right|IXPE before separation from Falcon 9 second stage]]


IXPE was launched on 9 December 2021 on a SpaceX Falcon 9 ([[List of Falcon 9 first-stage boosters#1061|B1061.5]]) from [[Kennedy Space Center Launch Complex 39A|LC-39A]] at NASA's [[Kennedy Space Center]] in Florida. The relatively small size and mass of the observatory falls well short of the normal capacity of SpaceX's Falcon 9 [[launch vehicle]]. However, Falcon 9 had to work to get IXPE into the correct orbit because IXPE is designed to operate in an almost exactly equatorial orbit with a 0° inclination. Launching out of [[Cape Canaveral Space Force Station|Cape Canaveral]], which is located 28.5° above the [[equator]], it was physically impossible to launch directly into a 0.2° equatorial orbit. Instead, the rocket needed to launch due east into a parking orbit and then perform what is known as a plane or inclination change once in space, as the spacecraft crossed the equator. For Falcon 9, that meant that even the tiny {{cvt|330|kg}} IXPE likely still represented about 20–30% of its maximum theoretical performance ({{cvt|1500–2000|kg}}) for such a mission profile, while the same launch vehicle is otherwise able to launch about {{cvt|15000|kg}} to the same {{cvt|540|km}} orbit IXPE was targeting when no plane change is needed.<ref>{{cite web|url=https://www.teslarati.com/spacex-nasa-ixpe-falcon-9-pad-39a-rollout/amp/|title=SpaceX Falcon 9 rocket rolls out to launch pad with NASA X-ray telescope &#124; TESLARATI}}</ref>
IXPE was launched on 9 December 2021 on a SpaceX Falcon&nbsp;9 ([[List of Falcon 9 first-stage boosters#1061|B1061.5]]) from [[Kennedy Space Center Launch Complex 39A|LC-39A]] at NASA's [[Kennedy Space Center]] in Florida. The relatively small size and mass of the observatory falls well short of the normal capacity of SpaceX's Falcon&nbsp;9 [[launch vehicle]]. However, Falcon&nbsp;9 had to work to get IXPE into the correct orbit because IXPE is designed to operate in an almost exactly equatorial orbit with a 0° [[inclination]]. Launching from [[Cape Canaveral Space Force Station|Cape Canaveral]], which is located 28.5° above the [[equator]], it was physically impossible to launch directly into a 0.2° equatorial orbit. Instead, the rocket needed to launch due east into a parking orbit and then perform a [[Orbital inclination change|plane, or inclination, change]] once in space, as the spacecraft crossed the equator. For Falcon&nbsp;9, this meant that even the tiny {{cvt|330|kg}} IXPE likely still represented about 20–30% of its maximum theoretical performance ({{cvt|1500–2000|kg}}) for such a mission profile, while the same launch vehicle is otherwise able to launch about {{cvt|15000|kg}} to the same {{cvt|540|km}} orbit IXPE was targeting when no plane change is needed, while recovering the first stage booster.<ref>{{cite web |url=https://www.teslarati.com/spacex-nasa-ixpe-falcon-9-pad-39a-rollout/amp/ |title=SpaceX Falcon 9 rocket rolls out to launch pad with NASA X-ray telescope |website=TESLARATI |date=7 December 2021 |access-date=9 December 2021 |archive-date=3 January 2022 |archive-url=https://web.archive.org/web/20220103125224/https://www.teslarati.com/spacex-nasa-ixpe-falcon-9-pad-39a-rollout/amp/ |url-status=live }}</ref>


IXPE is the first satellite dedicated to measuring the polarization of X-rays from a variety of cosmic sources, such as black holes and neutron stars. The orbit hugging the equator will minimize the X-ray instrument's exposure to radiation in the [[South Atlantic Anomaly]], the region where the inner [[Van Allen radiation belt]] comes closest to Earth's surface.
IXPE is the first satellite dedicated to measuring the polarization of X-rays from a variety of cosmic sources, such as [[black hole]]s and [[neutron star]]s. The orbit hugging the equator will minimize the X-ray instrument's exposure to radiation in the [[South Atlantic Anomaly]], the region where the inner [[Van Allen radiation belt]] comes closest to Earth's surface.


== Operations ==
== Operations ==
IXPE is built to last for two years. <ref name="sfn-20190708" />After that it may be retired and deorbited or given an extended mission.
IXPE is built to last for two years.<ref name="sfn-20190708" /> After that it may be retired and deorbited or given an extended mission.
[[File:This image of the supernova Cassiopeia A combines some of the first X-ray data collected by NASA’s Imaging X-ray Polarimetry Explorer, shown in magenta, with high-energy X-ray data from NASA’s Chandra X-Ray Observatory, in blue.jpg|thumb|This image of the supernova Cassiopeia A combines some of the first X-ray data collected by NASA’s Imaging X-ray Polarimetry Explorer, shown in magenta, with high-energy X-ray data from NASA’s Chandra X-Ray Observatory, in blue.]]
After launch and deployment of the IXPE spacecraft, NASA pointed the spacecraft at 1ES 1959+650, a black hole, and SMC X-1, a pulsar, for calibration. After that the spacecraft observed its first science target, [[Cassiopeia A]]. A first light image of Cassiopeia A was released on January 11th, 2022. <ref name=":0">{{Cite web|last=Mohon|first=Lee|date=2022-01-11|title=NASA's New IXPE Mission Begins Science Operations|url=http://www.nasa.gov/mission_pages/ixpe/news/nasa-s-new-ixpe-mission-begins-science-operations.html|access-date=2022-01-20|website=NASA}}</ref>
[[File:This image from NASA’s Imaging X-ray Polarimetry Explorer maps the intensity of X-rays coming from the observatory’s first target, the supernova Cassiopeia A.png|thumb|This image from NASA’s Imaging X-ray Polarimetry Explorer maps the intensity of X-rays coming from the observatory’s first target, the supernova Cassiopeia A.]]
30 targets are planned to be observed during IXPE's first year. <ref name=":0" />


After launch and deployment of the IXPE spacecraft, NASA pointed the spacecraft at 1ES 1959+650, a black hole, and SMC X-1, a pulsar, for calibration. After that the spacecraft observed its first science target, [[Cassiopeia&nbsp;A]]. A [[First light (astronomy)|first-light]] image of Cassiopeia&nbsp;A was released on 11&nbsp;January 2022.<ref name=":0">{{Cite web |last=Mohon |first=Lee |date=2022-01-11 |title=NASA's New IXPE Mission Begins Science Operations |url=http://www.nasa.gov/mission_pages/ixpe/news/nasa-s-new-ixpe-mission-begins-science-operations.html |access-date=2022-01-20 |website=NASA |archive-date=22 January 2022 |archive-url=https://web.archive.org/web/20220122081224/https://www.nasa.gov/mission_pages/ixpe/news/nasa-s-new-ixpe-mission-begins-science-operations.html |url-status=live }}</ref> 30&nbsp;targets are planned to be observed during IXPE's first year.<ref name=":0" />
IXPE communicates with Earth via a ground station in Malindi, Kenya. The ground station is owned and operated by the Italian Space Agency.<ref name=":0" />

IXPE communicates with Earth via a [[Broglio Space Center|ground station in Malindi]], Kenya. The ground station is owned and operated by the Italian Space Agency.<ref name=":0" />

At present mission operations for IXPE are controlled by the [[Laboratory for Atmospheric and Space Physics|Laboratory for Atmospheric and Space Physics (LASP)]].<ref>{{cite web |title=Quick Facts: Imaging X-ray Polarimetry Explorer (IXPE) |url=https://lasp.colorado.edu/home/missions-projects/quick-facts-ixpe/ |website=LASP |access-date=12 May 2022 |archive-date=28 May 2022 |archive-url=https://web.archive.org/web/20220528034210/https://lasp.colorado.edu/home/missions-projects/quick-facts-ixpe/ |url-status=dead }}</ref>

== Results ==
In May 2022 the first study of IXPE hinted the possibility of vacuum birefringence on [[4U 0142+61]]<ref>{{cite journal |arxiv=2205.08898 |first1=Roberto |last1=Taverna |first2=Roberto |last2=Turolla |title=Polarized x-rays from a magnetar |date=2022-05-18 |last3=Muleri |first3=Fabio |last4=Heyl |first4=Jeremy |last5=Zane |first5=Silvia |last6=Baldini |first6=Luca |last7=Caniulef |first7=Denis González |last8=Bachetti |first8=Matteo |last9=Rankin |first9=John |last10=Caiazzo |first10=Ilaria |last11=Di Lalla |first11=Niccolò |last12=Doroshenko |first12=Victor |last13=Errando |first13=Manel |last14=Gau |first14=Ephraim |last15=Kırmızıbayrak |first15=Demet|journal=Science |volume=378 |issue=6620 |pages=646–650 |doi=10.1126/science.add0080 |pmid=36356124 |bibcode=2022Sci...378..646T |s2cid=248863030 }}</ref><ref>{{Cite web |date=2022-06-30 |title=X-ray polarisation probes extreme physics |url=https://cerncourier.com/a/x-ray-polarisation-probes-extreme-physics/ |access-date=2022-08-15 |website=CERN Courier |language=en-GB |archive-date=15 August 2022 |archive-url=https://web.archive.org/web/20220815040741/https://cerncourier.com/a/x-ray-polarisation-probes-extreme-physics/ |url-status=live }}</ref> and in August another study looked at [[Centaurus A]] measuring low polarization degree, suggesting that the X-ray emission is coming from a scattering process rather than arising directly from the accelerated particles of the jet.<ref>{{Cite journal |last1=Ehlert |first1=Steven R. |last2=Ferrazzoli |first2=Riccardo |last3=Marinucci |first3=Andrea |last4=Marshall |first4=Herman L. |last5=Middei |first5=Riccardo |last6=Pacciani |first6=Luigi |last7=Perri |first7=Matteo |last8=Petrucci |first8=Pierre-Olivier |last9=Puccetti |first9=Simonetta |last10=Barnouin |first10=Thibault |last11=Bianchi |first11=Stefano |last12=Liodakis |first12=Ioannis |last13=Madejski |first13=Grzegorz |last14=Marin |first14=Frédéric |last15=Marscher |first15=Alan P. |date=2022-08-01 |title=Limits on X-Ray Polarization at the Core of Centaurus A as Observed with the Imaging X-Ray Polarimetry Explorer |journal=The Astrophysical Journal |volume=935 |issue=2 |pages=116 |doi=10.3847/1538-4357/ac8056 |arxiv=2207.06625 |bibcode=2022ApJ...935..116E |s2cid=250526704 |issn=0004-637X|doi-access=free }}</ref><ref>{{Cite web |date=2022-08-26 |title=Probing a Bright Radio Galaxy with X-Rays |url=https://aasnova.org/2022/08/26/probing-a-bright-radio-galaxy-with-x-rays/ |access-date=2022-08-29 |website=AAS Nova |language=en-US |archive-date=29 August 2022 |archive-url=https://web.archive.org/web/20220829024043/https://aasnova.org/2022/08/26/probing-a-bright-radio-galaxy-with-x-rays/ |url-status=live }}</ref> In October 2022 it observed the [[Gamma-ray burst|gamma ray burst]] [[GRB 221009A]], also known as the "Brightest of all time" (BOAT).<ref>{{Cite journal |last1=Negro |first1=Michela |last2=Di Lalla |first2=Niccolò |last3=Omodei |first3=Nicola |last4=Veres |first4=Péter |last5=Silvestri |first5=Stefano |last6=Manfreda |first6=Alberto |last7=Burns |first7=Eric |last8=Baldini |first8=Luca |last9=Costa |first9=Enrico |last10=Ehlert |first10=Steven R. |last11=Kennea |first11=Jamie A. |last12=Liodakis |first12=Ioannis |last13=Marshall |first13=Herman L. |last14=Mereghetti |first14=Sandro |last15=Middei |first15=Riccardo |date=2023-03-01 |title=The IXPE View of GRB 221009A |journal=The Astrophysical Journal Letters |language=en |volume=946 |issue=1 |pages=L21 |doi=10.3847/2041-8213/acba17 |s2cid=255440524 |issn=2041-8205|arxiv=2301.01798 |bibcode=2023ApJ...946L..21N |doi-access=free }}</ref><ref>{{Cite web |last=Hensley |first=Kerry |date=2023-03-29 |title=Focusing on the Brightest Gamma-ray Burst of All Time |url=https://aasnova.org/2023/03/29/gamma-ray-burst-grb-221009a/ |access-date=2023-04-12 |website=AAS Nova |language=en-US |archive-date=12 April 2023 |archive-url=https://web.archive.org/web/20230412031918/https://aasnova.org/2023/03/29/gamma-ray-burst-grb-221009a/ |url-status=live }}</ref>


== Gallery ==
== Gallery ==
<gallery mode="packed">
<gallery mode="packed" caption="IXPE spacecraft">
File:IXPE-space-telescope-drawing.png|IXPE structure
File:IXPE-space-telescope-drawing.png|Diagram of IXPE's structure
File:Images from IXPE Prelaunch press conference 04.jpg|alt=A small spacecraft being prepared for launch.|IXPE prelaunch images
File:Images from IXPE Prelaunch press conference 03.jpg|IXPE before launch
File:IXPE deploying.webm|Animation of the IXPE deployment process
File:Images from IXPE Prelaunch press conference 05.jpg|IXPE in stowed form for launch.
</gallery>
File:IXPE deployment and solar arrays unfurling 01.jpg|IXPE with fully deployed solar arrays.

File:IXPE deployment and solar arrays unfurling 02.jpg|Deployment of solar arrays
<gallery mode="packed" heights="200" caption="Observations by IXPE">
File:IXPE deployment and solar arrays unfurling 03 (cropped).jpg|IXPE solar arrays
File:This image from NASA’s Imaging X-ray Polarimetry Explorer maps the intensity of X-rays coming from the observatory’s first target, the supernova Cassiopeia A.png|IXPE X-ray image of the [[supernova remnant]] [[Cas A|Cassiopeia&nbsp;A]]
File:IXPE deployment and solar arrays unfurling 04 (cropped).jpg|IXPE half deployed solar arrays.
File:Ixpe satellite detecting X ray.webm|Ixpe satellite detecting X ray (Italian)
</gallery>
</gallery>


== See also ==
== See also ==
{{commons cat|Imaging X-ray Polarimetry Explorer}}
{{Portal|Spaceflight}}
{{Portal|Spaceflight}}


Line 146: Line 143:
* [[X-ray astronomy]]
* [[X-ray astronomy]]
* [[X-ray telescope]]
* [[X-ray telescope]]
* [[XPoSat|XpoSAT]] - launched around the same time , complements the Satellites in the 2-30keV range


== References ==
== References ==

Latest revision as of 21:48, 30 April 2024

Imaging X-ray Polarimetry Explorer
IXPE satellite, on the top are its three identical X-ray optics elements, the sensors are on the bottom.
NamesExplorer 97
IXPE
SMEX-14
Mission typeX-ray astronomy satellite
OperatorNASA, ASI
COSPAR ID2021-121A Edit this at Wikidata
SATCAT no.49954
Websiteixpe.msfc.nasa.gov
asi.it/ixpe
Mission duration5 years (planned)
2 years, 5 months and 8 days (in progress)
Spacecraft properties
SpacecraftExplorer XCVII
Spacecraft typeImaging X-ray Polarimetry Explorer
BusBCP-100
ManufacturerBall Aerospace & Technologies
OHB Italia
Launch mass330 kg (730 lb)[1]
Payload mass170 kg (370 lb)
Dimensions1.1 m (3 ft 7 in) in diameter and 5.2 m (17 ft) tall, fully extended
Solar array: 2.7 m (8 ft 10 in) fully deployed
Start of mission
Launch date9 December 2021, 06:00 UTC[3]
RocketFalcon 9, B1061.5
Launch siteKennedy Space Center, LC-39A
ContractorSpaceX
Entered service10 January 2022[2]
Orbital parameters
Reference systemGeocentric orbit
RegimeLow Earth orbit
Perigee altitude540 km (340 mi)
Apogee altitude540 km (340 mi)
Inclination0.20°
Period90.00 minutes
Main telescope
TypeThree-mirror
Focal length4 m[4]
WavelengthsX-ray
Transponders
BandS-band[5]

IXPE mission logo
Explorers Program
← ICON (Explorer 96)
PUNCH and TRACERS →
 

Imaging X-ray Polarimetry Explorer, commonly known as IXPE or SMEX-14, is a space observatory with three identical telescopes designed to measure the polarization of cosmic X-rays of black holes, neutron stars, and pulsars.[6] The observatory, which was launched on 9 December 2021, is an international collaboration between NASA and the Italian Space Agency (ASI). It is part of NASA's Explorers program, which designs low-cost spacecraft to study heliophysics and astrophysics.

The mission will study exotic astronomical objects and permit mapping of the magnetic fields of black holes, neutron stars, pulsars, supernova remnants, magnetars, quasars, and active galactic nuclei. The high-energy X-ray radiation from these objects' surrounding environment can be polarized – oscillating in a particular direction. Studying the polarization of X-rays reveals the physics of these objects and can provide insights into the high-temperature environments where they are created.[7]

Overview[edit]

Illustration of IXPE

The IXPE mission was announced on 3 January 2017[6] and was launched on 9 December 2021.[3] The international collaboration was signed in June 2017,[1] when the Italian Space Agency (ASI) committed to provide the X-ray polarization detectors.[7] The estimated cost of the mission and its two-year operation is US$188 million (the launch cost is US$50.3 million).[8][7] The goal of the IXPE mission is to expand understanding of high-energy astrophysical processes and sources, in support of NASA's first science objective in astrophysics: "Discover how the universe works".[1] By obtaining X-ray polarimetry and polarimetric imaging of cosmic sources, IXPE addresses two specific science objectives: to determine the radiation processes and detailed properties of specific cosmic X-ray sources or categories of sources; and to explore general relativistic and quantum effects in extreme environments.[1][6]

During IXPE's two-year mission, it will study targets such as active galactic nuclei, quasars, pulsars, pulsar wind nebulae, magnetars, accreting X-ray binaries, supernova remnants, and the Galactic Center.[4]

The spacecraft was built by Ball Aerospace & Technologies.[1] The principal investigator is Martin C. Weisskopf of NASA Marshall Space Flight Center; he is the chief scientist for X-ray astronomy at NASA's Marshall Space Flight Center and project scientist for the Chandra X-ray Observatory spacecraft.[7]

Other partners include the McGill University, Massachusetts Institute of Technology (MIT), Roma Tre University, Stanford University,[5] OHB Italia[9] and the University of Colorado Boulder.[10]

Objectives[edit]

The technical and science objectives include:[3]

  • Improve polarization sensitivity by two orders of magnitude over the X-ray polarimeter aboard the Orbiting Solar Observatory 8
  • Provide simultaneous spectral, spatial, and temporal measurements
  • Determine the geometry and the emission mechanism of active galactic nuclei and microquasars
  • Find the magnetic field configuration in magnetars and determine the magnitude of the field
  • Find the mechanism for X-ray production in pulsars (both isolated and accreting) and the geometry
  • Determine how particles are accelerated in pulsar wind nebula

Telescopes[edit]

The space observatory features three identical telescopes designed to measure the polarization of cosmic X-rays.[6] The polarization-sensitive detector was invented and developed by Italian scientists of the Istituto Nazionale di AstroFisica (INAF) and the Istituto Nazionale di Fisica Nucleare (INFN) and was refined over several years.[4][11][12]

Telescope (×3) Basic parameters
Wavelength X-ray
Energy range 2–8 keV
Field of view (FoV) >11′
Angular resolution ≤30″

Principle[edit]

IXPE's payload is a set of three identical imaging X-ray polarimetry systems mounted on a common optical bench and co-aligned with the pointing axis of the spacecraft.[1] Each system operates independently for redundancy and comprises a mirror module assembly that focuses X-rays onto a polarization-sensitive imaging detector developed in Italy.[1] The 4 m (13 ft) focal length is achieved using a deployable boom.

The Gas Pixel Detectors (GPD),[13] a type of Micropattern gaseous detector, rely on the anisotropy of the emission direction of photoelectrons produced by polarized photons to gauge with high sensitivity the polarization state of X-rays interacting in a gaseous medium.[4] Position-dependent and energy-dependent polarization maps of such synchrotron-emitting sources will reveal the magnetic-field structure of the X-ray emitting regions. X-ray polarimetric imaging better indicates the magnetic structure in regions of strong electron acceleration. The system is capable to resolve point sources from surrounding nebular emission or from adjacent point sources.[4]

Launch profile[edit]

IXPE launch

IXPE was launched on 9 December 2021 on a SpaceX Falcon 9 (B1061.5) from LC-39A at NASA's Kennedy Space Center in Florida. The relatively small size and mass of the observatory falls well short of the normal capacity of SpaceX's Falcon 9 launch vehicle. However, Falcon 9 had to work to get IXPE into the correct orbit because IXPE is designed to operate in an almost exactly equatorial orbit with a 0° inclination. Launching from Cape Canaveral, which is located 28.5° above the equator, it was physically impossible to launch directly into a 0.2° equatorial orbit. Instead, the rocket needed to launch due east into a parking orbit and then perform a plane, or inclination, change once in space, as the spacecraft crossed the equator. For Falcon 9, this meant that even the tiny 330 kg (730 lb) IXPE likely still represented about 20–30% of its maximum theoretical performance (1,500–2,000 kg (3,300–4,400 lb)) for such a mission profile, while the same launch vehicle is otherwise able to launch about 15,000 kg (33,000 lb) to the same 540 km (340 mi) orbit IXPE was targeting when no plane change is needed, while recovering the first stage booster.[14]

IXPE is the first satellite dedicated to measuring the polarization of X-rays from a variety of cosmic sources, such as black holes and neutron stars. The orbit hugging the equator will minimize the X-ray instrument's exposure to radiation in the South Atlantic Anomaly, the region where the inner Van Allen radiation belt comes closest to Earth's surface.

Operations[edit]

IXPE is built to last for two years.[8] After that it may be retired and deorbited or given an extended mission.

After launch and deployment of the IXPE spacecraft, NASA pointed the spacecraft at 1ES 1959+650, a black hole, and SMC X-1, a pulsar, for calibration. After that the spacecraft observed its first science target, Cassiopeia A. A first-light image of Cassiopeia A was released on 11 January 2022.[15] 30 targets are planned to be observed during IXPE's first year.[15]

IXPE communicates with Earth via a ground station in Malindi, Kenya. The ground station is owned and operated by the Italian Space Agency.[15]

At present mission operations for IXPE are controlled by the Laboratory for Atmospheric and Space Physics (LASP).[16]

Results[edit]

In May 2022 the first study of IXPE hinted the possibility of vacuum birefringence on 4U 0142+61[17][18] and in August another study looked at Centaurus A measuring low polarization degree, suggesting that the X-ray emission is coming from a scattering process rather than arising directly from the accelerated particles of the jet.[19][20] In October 2022 it observed the gamma ray burst GRB 221009A, also known as the "Brightest of all time" (BOAT).[21][22]

Gallery[edit]

See also[edit]

References[edit]

  1. ^ a b c d e f g "IXPE (Imaging X-ray Polarimetry Explorer)". eoportal.com. ESA. Archived from the original on 30 April 2024. Retrieved 17 February 2019.
  2. ^ "IXPE X-ray observatory completes commissioning, eyes Cassiopeia A for calibration". NASASpaceFlight.com. 10 January 2022. Archived from the original on 11 January 2022. Retrieved 11 January 2022.
  3. ^ a b c "IXPE Home: Expanding the X-ray View of the Universe". Marshall Space Flight Center (MSFC). NASA. 7 September 2021. Archived from the original on 2 October 2021. Retrieved 15 September 2021. Public Domain This article incorporates text from this source, which is in the public domain.
  4. ^ a b c d e Weisskopf, Martin C.; Ramsey, Brian; o'Dell, Stephen L.; Tennant, Allyn; Elsner, Ronald; Soffitta, Paolo; Bellazzini, Ronaldo; Costa, Enrico; Kolodziejczak, Jeffery; Kaspi, Victoria; Muleri, Fabio; Marshall, Herman; Matt, Giorgio; Romani, Roger (31 October 2016). "The Imaging X-ray Polarimetry Explorer (IXPE)". Results in Physics. 6: 1179–1180. Bibcode:2016ResPh...6.1179W. doi:10.1016/j.rinp.2016.10.021. hdl:2060/20160007987.
  5. ^ a b "IXPE Fact Sheet" (PDF). NASA. 2017. Archived (PDF) from the original on 2 April 2019. Retrieved 2 February 2018. Public Domain This article incorporates text from this source, which is in the public domain.
  6. ^ a b c d "NASA Selects Mission to Study Black Holes, Cosmic X-ray Mysteries". NASA. 3 January 2017. Archived from the original on 8 December 2021. Retrieved 6 December 2021. Public Domain This article incorporates text from this source, which is in the public domain.
  7. ^ a b c d "NASA selects X-ray astronomy mission". SpaceNews. 4 January 2017. Archived from the original on 30 April 2024. Retrieved 9 December 2021.
  8. ^ a b Clark, Stephen (8 July 2019). "SpaceX wins NASA contract to launch X-ray telescope on reused rocket". Spaceflight Now. Archived from the original on 2 January 2022. Retrieved 9 December 2021.
  9. ^ "Advanced Observatory Design for the Imaging X-Ray Polarimeter Explorer (IXPE) Mission". Space Foundation. 2018. Archived from the original on 9 December 2021. Retrieved 10 December 2021.
  10. ^ "Students operate $214M spacecraft. 'It's like what you see in the movies.'". CU Boulder Today. 18 January 2022. Archived from the original on 2 August 2022. Retrieved 2 August 2022.
  11. ^ Costa, Enrico; Soffitta, Paolo; Bellazzini, Ronaldo; Brez, Alessandro; Lumb, Nicholas; Spandre, Gloria (2001). "An efficient photoelectric X-ray polarimeter for the study of black holes and neutron stars". Nature. 411 (6838): 662–665. arXiv:astro-ph/0107486. Bibcode:2001Natur.411..662C. doi:10.1038/35079508. PMID 11395761. S2CID 4348577.
  12. ^ Bellazzini, R.; Spandre, G.; Minuti, M.; Baldini, L.; Brez, A.; Latronico, L.; Omodei, N.; Razzano, M.; Massai, M. M.; Pesce-Rollins, M.; Sgrò, C.; Costa, E.; Soffitta, P.; Sipila, H.; Lempinen, E. (2017). "A sealed Gas Pixel Detector for X-ray astronomy". Nuclear Instruments and Methods in Physics Research Section A. 592 (2): 853–858. arXiv:astro-ph/0611512. Bibcode:2007NIMPA.579..853B. doi:10.1016/j.nima.2007.05.304. S2CID 119036804.
  13. ^ Soffitta, Paolo; Costa, Enrico; di Persio, Giuseppe; Morelli, Ennio; Rubini, Alda; Bellazzini, Ronaldo; Brez, Alessandro; Raffo, Renzo; Spandre, Gloria; Joy, David (11 August 2001). "Astronomical X-ray polarimetry based on photoelectric effect with microgap detectors". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 469 (2): 164–184. arXiv:astro-ph/0012183. Bibcode:2001NIMPA.469..164S. doi:10.1016/S0168-9002(01)00772-0. Archived from the original on 17 June 2022. Retrieved 14 January 2024.
  14. ^ "SpaceX Falcon 9 rocket rolls out to launch pad with NASA X-ray telescope". TESLARATI. 7 December 2021. Archived from the original on 3 January 2022. Retrieved 9 December 2021.
  15. ^ a b c Mohon, Lee (11 January 2022). "NASA's New IXPE Mission Begins Science Operations". NASA. Archived from the original on 22 January 2022. Retrieved 20 January 2022.
  16. ^ "Quick Facts: Imaging X-ray Polarimetry Explorer (IXPE)". LASP. Archived from the original on 28 May 2022. Retrieved 12 May 2022.
  17. ^ Taverna, Roberto; Turolla, Roberto; Muleri, Fabio; Heyl, Jeremy; Zane, Silvia; Baldini, Luca; Caniulef, Denis González; Bachetti, Matteo; Rankin, John; Caiazzo, Ilaria; Di Lalla, Niccolò; Doroshenko, Victor; Errando, Manel; Gau, Ephraim; Kırmızıbayrak, Demet (18 May 2022). "Polarized x-rays from a magnetar". Science. 378 (6620): 646–650. arXiv:2205.08898. Bibcode:2022Sci...378..646T. doi:10.1126/science.add0080. PMID 36356124. S2CID 248863030.
  18. ^ "X-ray polarisation probes extreme physics". CERN Courier. 30 June 2022. Archived from the original on 15 August 2022. Retrieved 15 August 2022.
  19. ^ Ehlert, Steven R.; Ferrazzoli, Riccardo; Marinucci, Andrea; Marshall, Herman L.; Middei, Riccardo; Pacciani, Luigi; Perri, Matteo; Petrucci, Pierre-Olivier; Puccetti, Simonetta; Barnouin, Thibault; Bianchi, Stefano; Liodakis, Ioannis; Madejski, Grzegorz; Marin, Frédéric; Marscher, Alan P. (1 August 2022). "Limits on X-Ray Polarization at the Core of Centaurus A as Observed with the Imaging X-Ray Polarimetry Explorer". The Astrophysical Journal. 935 (2): 116. arXiv:2207.06625. Bibcode:2022ApJ...935..116E. doi:10.3847/1538-4357/ac8056. ISSN 0004-637X. S2CID 250526704.
  20. ^ "Probing a Bright Radio Galaxy with X-Rays". AAS Nova. 26 August 2022. Archived from the original on 29 August 2022. Retrieved 29 August 2022.
  21. ^ Negro, Michela; Di Lalla, Niccolò; Omodei, Nicola; Veres, Péter; Silvestri, Stefano; Manfreda, Alberto; Burns, Eric; Baldini, Luca; Costa, Enrico; Ehlert, Steven R.; Kennea, Jamie A.; Liodakis, Ioannis; Marshall, Herman L.; Mereghetti, Sandro; Middei, Riccardo (1 March 2023). "The IXPE View of GRB 221009A". The Astrophysical Journal Letters. 946 (1): L21. arXiv:2301.01798. Bibcode:2023ApJ...946L..21N. doi:10.3847/2041-8213/acba17. ISSN 2041-8205. S2CID 255440524.
  22. ^ Hensley, Kerry (29 March 2023). "Focusing on the Brightest Gamma-ray Burst of All Time". AAS Nova. Archived from the original on 12 April 2023. Retrieved 12 April 2023.