Feynman Prize in Nanotechnology

from Wikipedia, the free encyclopedia

The Feynman Prize in Nanotechnology is a prize for nanotechnology and nanosciences awarded by the Foresight Institute in Palo Alto since 1993 . At first it was awarded every two years, since 1997 annually.

It is named after Richard Feynman , whose lecture There is plenty of room at the bottom from 1959 is widely regarded as a visionary anticipation of the nanotechnology revolution. The prize is endowed with $ 5,000 and is awarded in the categories of experiment and theory.

Founded in 1986 by Eric Drexler , the Foresight Institute is a non-profit organization promoting the nanosciences. She also praises a grand prize of $ 250,000 each for the first person to implement a nano-robot arm with precise control and an 8-bit adder in the nano range.

Award winners

year Award winners institution Reason
1993 Charles Musgrave California Institute of Technology "For his work on modeling a hydrogen abstraction tool useful in nanotechnology"
1995 Nadrian C. Seeman New York University "For developing ways to construct three-dimensional structures, including cubes and more complex polyhedra, from synthesized DNA molecules"

Category experiment

year Award winners institution Reason
1997 James K. Gimzewski IBM research laboratory Rüschlikon near Zurich "For work using scanning probe microscopes to manipulate molecules"
Reto Schlittler
Christian Joachim Institut National des Sciences Appliquées de Toulouse (CEMES)
1998 M. Reza Ghadiri Scripps Research Institute "For groundbreaking work in constructing molecular structures through the use of self-organization, the same forces used to assemble the molecular machine systems found in nature"
1999 Phaedon Avouris Thomas J. Watson Research Center "[For] the development of carbon nanotubes for potential computing device applications"
2000 Richard Stanley Williams Hewlett Packard Laboratories "For building a molecular switch, a major step toward their long-term goal of building entire memory chips that are just a hundred nanometers wide"
Philip Kuekes
James R. Heath University of California, Los Angeles
2001 Charles M. Dear Harvard University "For his pioneering experimental work in molecular nanotechnology which included seminal contributions to the synthesis and characterization of the unique physical properties of carbon nanotubes and nanowires"
2002 Chad A. Mirkin Northwestern University "For opening up new possibilities for the fabrication of molecular machine systems by selectively functionalizing nanoparticles and surfaces, particularly with DNA, enabling the self-assembly of new structures which move us closer to the goal of molecular manufacturing"
2003 Carlo Montemagno University of California, Los Angeles “For his pioneering research into methods of integrating single molecule biological motors with nano-scale silicon devices, which opens up new possibilities for nanomachines”
2004 Homme Hellinga Duke University "For his achievement in the engineering of atomically precise devices capable of precise manipulation of other molecular structures"
2005 Christian sheep master University of Pittsburgh "For his work in developing a novel technology synthesizing macromolecules of intermediate sizes (between 1000 and 10,000 Daltons ) with designed shapes and functions"
2006 Erik Winfree California Institute of Technology “For their work demonstrating that DNA tiles can be designed to form crystalline nanotubes that exhibit a stiffness greater than the biological protein nanofilament actin , [and for having] established that algorithmic self-assembly could work well enough to generate non-trivial non-periodic patterns ”
Paul WK Rothemund
2007 Fraser Stoddart University of California, Los Angeles "[For having] pioneered the synthesis and assembly of unique active molecular machines for manufacturing into practical nanoscale devices"
2008 James Mitchell Tour Rice University "For the synthesis of nanocars ... and other molecular machines [which] is providing critical insight in investigations of bottom-up molecular manufacturing"
2009 Yoshiaki Sugimoto University of Osaka "In recognition of their pioneering experimental demonstrations of mechanosynthesis, specifically the use of atomic resolution dynamic force microscopy - also known as non-contact atomic force microscopy (NC-AFM) - for vertical and lateral manipulation of single atoms on semiconductor surfaces"
Masayuki Abe
Oscar Custance National Institute for Materials Science, Japan
2010 Masakazu Aono International Center for Materials Nanoarchitectonics (MANA Center), National Institute for Materials Science in Japan “In recognition of his pioneering and continuing work, including research into the manipulation of atoms, the multiprobe STM and AFM , the atomic switch, and single-molecule-level chemical control including ultradense molecular data storage and molecular wiring; and his inspiration of an entire generation of researchers who have made their own ground-breaking contributions to nanotechnology ”
2011 Leonhard Grill Fritz Haber Institute "In recognition of his pioneering and continuing work on manipulating and structuring functional matter at the atomic scale"
2012 Gerhard Meyer IBM Research Laboratory Zurich "[For] their remarkable experiments advancing the frontiers of scanning probe microscopy. They were the first to produce images of molecular orbitals and charges detailed enough to identify the structure of individual molecules, as well as metal-molecule complexes. They have also been able to precisely make and break individual chemical bonds. "
Leo Gross
Jascha Repp
2013 David N. Beratan Duke University "The award recognizes Prof. Beratan's development of theoretical approaches to understand the function of complex molecular and macromolecular assemblies and machines."
2014 Joseph W. Lyding University of Illinois "Development of scanning tunneling microscope (STM) technology"
2015 Michelle Y. Simmons University of New South Wales "Fabricating electronic devices with atomic-precision accuracy"
2016 Franz J. Giessibl University of Regensburg “… Pioneered major advancements in scanning probe microscopy for imaging and manipulating individual atoms, including the first achievement of atomic resolution by frequency modulation atomic force microscopy, inventing the qPlus sensor-based atomic force microscopy technique, and achieving subatomic resolution and the visualization of individual chemical bonds ”
2017 William M. Shih Harvard University “… The total mastery of the design and synthesis of three dimensional DNA nanostructures. His work extended DNA origami from 2D to 3D - a breakthrough in the field. Shih entered DNA nanotechnology with a Nature article demonstrating the folding of a single strand of DNA; it was on the strength of this Nature paper that Shih got his position at Harvard. Thanks in large part to Shih's efforts over the last decade, programmable self-assembly of 3D DNA nanoshapes the size of a virus now is routine. His groundbreaking studies in Nature and Science that generalized DNA origami to solid three-dimensional structures were published in 2009. ”
2018 Christopher Lutz IBM Research "For advances in manipulating atoms and small molecules on surfaces and employing them for data storage and computation."
Andreas Heinrich IBS Center for Quantum Nanoscience
2019 Lulu Qian California Institute of Technology  

Category theory

year Award winners institution Reason
1997 Charles Bauschlicher NASA Ames Research Center "For work in computational nanotechnology"
Stephen Barnard
Creon Levite
Glenn Deardorff
Al globe
Jie Han
Richard Jaffe
Alessandra Ricca
Marzio Rosi
Deepak Srivastava
H. Thuemmel
1998 Ralph Merkle Zyvex "For their computational modeling of molecular tools for atomically-precise chemical reactions"
Stephen Walch ELORET Corporation / NASA Ames Research Center
1999 William A. Goddard III California Institute of Technology "For their work in modeling the operation of molecular machine designs"
Tahir Cagin
Yue Qi
2000 Uzi Landman Georgia Institute of Technology "For his pioneering work in computational materials science for nanostructures"
2001 Mark A. Ratner Northwestern University "[For being] a theorist whose work has made major contributions to the development and success of nanometer-scale electronic devices"
2002 Don Brenner North Carolina State University "For fundamental advances in our ability to model molecular machine systems, and for the design and analysis of components likely to be important in future molecular manufacturing systems"
2003 Marvin Cohen University of California, Berkeley "For their contributions to the understanding of the behavior of materials"
Steven G. Louie
2004 David Baker University of Washington "For their development of RosettaDesign , a program that has a high success rate in designing stable protein structures with a specified backbone folding structure"
Brian Kuhlman University of North Carolina at Chapel Hill
2005 Christian Joachim CNRS "For developing theoretical tools and establishing the principles for design of a wide variety of single molecular functional nanomachines"
2006 Erik Winfree California Institute of Technology "For their 'Theory in Molecular Computation and Algorithmic Self-assembly' research ... based on their demonstration of methods for universal computation with DNA, including using DNA tiles to simulate cellular automata "
Paul WK Rothemund
2007 David A. Leigh University of Edinburgh "[For] the design and synthesis of artificial molecular motors and machines from first principles and ... the construction of molecular machine systems that function in the realm of Brownian motion "
2008 George C. Treasure Northwestern University "First for sophisticated modeling and optimization of the dip pen nanolithography method of nanofabrication, and second, for his explanation of plasmon effects in metallic nanodots"
2009 Robert A. Freitas Jr. Institute for Molecular Manufacturing “In recognition of his pioneering theoretical work in mechanosynthesis in which he proposed specific molecular tools and analyzed them using ab initio quantum chemistry to validate their ability to build complex molecular structures, [and] also his previous work in systems design of molecular machines, including replicating molecular manufacturing systems, which should eventually be able to make large atomically precise products economically, and the design of medical nanodevices, which should eventually revolutionize medicine ”
2010 Gustavo E. Scuseria Rice University "For his development of quantum mechanical methods and computational programs that make it possible to carry out accurate theoretical predictions of molecules and solids, and their application to the chemical and electronic properties of carbon nanostructures"
2011 Raymond Astumian University of Maine "For his contributions to the understanding of Brownian motion and its use to power molecular motors and other functional mechanisms at the atomic scale"
2012 David Soloveichik University of California, San Francisco "For his general theory of DNA displacement cascades. He has shown that systems of DNA molecules can be designed with arbitrary dynamic behavior. In particular, he has shown that they are Turing-complete , and so can be made to run any general-purpose computer program. "
2013 Alexander K. Zettl University of California, Berkeley "The award recognizes Prof. Zettl's exceptional work in the fabrication of nanoscale electromechanical systems (NEMS), spanning multiple decades and including carbon nanotube-based bearings, actuators, and sensors brought to fruition with cutting-edge nanoscale engineering."
2014 Amanda S. Barnard CSIRO "Research for diamond nanoparticles"
2015 Markus J. Buehler Massachusetts Institute of Technology "Research enabling new multiscale paradigms in hierarchical systems"
2016 Bartosz A. Grzybowski Ulsan National Institute of Science and Technology , Korea "Research on computer-assisted organic synthesis"
2017 Giovanni Zocchi University of California, Los Angeles “… For inventing a method (“ nano-rheology ”) for measuring stress - strain relations of soft nanoparticles with sub-Angstrom resolution and thereby discovering that enzyme mechanics is viscoelastic. Nano-rheology allows the exploration of conformational changes in enzymes from a materials science perspective. This includes the demonstration of nano-rheology as a biochemical assay. When enzymes bind small molecules, such as substrates or inhibitors, their mechanical susceptibility changes. This effect is easily detected by nano-rheology. The method can measure binding of small ligands, where existing label free methods such as the Biacore instrument fail. Nano-rheology thus emerges as a potential alternative to electronic and spin spectroscopies for certain bio-molecular assays. "
2018 O. Anatole von Lilienfeld University of Basel "For introducing innovative new ways to accelerate QM quality predictions across materials compound space by multiple orders of magnitude."
2019 Giulia Galli University of Chicago  

Web links

Individual evidence

  1. ^ First Feynman Prize in Nanotechnology Awarded . In: Foresight Update . Foresight Nanotech Institute. December 15, 1993. Retrieved April 10, 2011.
  2. ^ Lewis M. Phelps: 1995 Feynman Prize in Nanotechnology Awarded . In: Foresight Update . Foresight Nanotech Institute. November 30, 1995. Archived from the original on July 26, 2012. Info: The archive link was automatically inserted and not yet checked. Please check the original and archive link according to the instructions and then remove this notice. Retrieved April 10, 2011. @1@ 2Template: Webachiv / IABot / www.foresight.org
  3. a b 1997 Feynman Prize in Nanotechnology Awarded to Teams at IBM Zurich and at NASA Ames . Foresight Nanotech Institute. Retrieved April 10, 2011.
  4. a b 1998 Feynman Prize in Nanotechnology . Foresight Nanotech Institute. Retrieved April 10, 2011.
  5. a b 1999 Feynman Prize in Nanotechnology . Foresight Nanotech Institute. Retrieved April 10, 2011.
  6. a b 2000 Feynman Prize in Nanotechnology . Foresight Nanotech Institute. Retrieved April 10, 2011.
  7. a b 2001 Feynman Prize in Nanotechnology . Foresight Nanotech Institute. Retrieved April 10, 2011.
  8. a b 2002 Foresight Institute Feynman Prize . Foresight Nanotech Institute. Retrieved April 10, 2011.
  9. a b 2003 Foresight Institute Feynman Prize . Foresight Nanotech Institute. Retrieved April 10, 2011.
  10. a b 2004 Foresight Institute Feynman Prize . Foresight Nanotech Institute. Retrieved April 10, 2011.
  11. a b 2005 Foresight Institute Feynman Prize . Foresight Nanotech Institute. Retrieved April 10, 2011.
  12. a b 2006 Foresight Institute Feynman Prize . Foresight Nanotech Institute. Retrieved April 10, 2011.
  13. a b 2007 Foresight Institute Feynman Prize . Foresight Nanotech Institute. Retrieved April 10, 2011.
  14. a b 2008 Foresight Institute Feynman Prize . Foresight Nanotech Institute. Retrieved April 10, 2011.
  15. a b 2009 Foresight Institute Feynman Prize . Foresight Nanotech Institute. October 6, 2009. Retrieved April 10, 2011.
  16. a b 2010 Foresight Institute Feynman Prize . Foresight Nanotech Institute. December 20, 2010. Retrieved April 10, 2011.
  17. a b 2011 Foresight Institute Feynman Prize . Foresight Nanotech Institute. October 16, 2012. Retrieved October 20, 2012.
  18. a b 2012 Foresight Institute Feynman Prize . Foresight Nanotech Institute. December 18, 2012. Retrieved December 18, 2012.
  19. a b 2013 Foresight Institute Feynman Prize . Foresight Nanotech Institute. Retrieved February 6, 2014.
  20. a b 2014 Foresight Institute Feynman Prize. In: foresight.org. April 23, 2015, accessed April 24, 2015 .
  21. a b 2015 Foresight Institute Feynman Prize. In: foresight.org. May 23, 2016. Retrieved May 27, 2016 .
  22. a b Grzybowski, Giessibl Win 2016 Foresight Institute Feynman Prize. In: prweb.com. October 5, 2016, accessed October 5, 2016 .
  23. a b 2017 Foresight Institute Feynman Prize ; accessed on October 11, 2017.
  24. a b 2018 Foresight Institute Feynman Prize. In: foresight.org. May 23, 2018. Retrieved August 24, 2018 .
  25. a b Foresight Institute Awards 2019 Feynman Prizes in Nanotechnology to Qian, Galli; awards presented by Nobelist, Sir Fraser Stoddart. Press release of September 30, 2019 on prweb.com; accessed on January 14, 2020.