Stereographic projection
A stereographic projection (also conformal azimuthal projection ) is an image of a spherical surface in a plane with the help of a central projection, whose projection center (PZ) lies on the sphere. The straight line containing the projection center and the center of the sphere is orthogonal to the image plane, which is traditionally the tangential plane lying opposite the projection center .
The stereographic projection was first used to depict the celestial sphere on the astrolabe . It was discovered in antiquity, probably by Hipparchus around 130 BC. It is detailed in the small treatise Planisphaerium of Ptolemyos (approx. 85160) presented in detail and with geometrical proof that circles on the spherical surface merge into circles of the image plane ( circular fidelity ) . The Nuremberg astronomer and mathematician Johannes Werner (1468–1528) first came up with the idea of using the circular and angular accuracy of this image for cartographic images of the earth's surface .
In the Crystallography the stereographic projection finds practical application in view of the lattice planes of a crystal (usually anglepreserving means of the socalled Wulff'schen network ) and in the structural geology in the representation of terrain data as the strike and falling of layer , foliation , discard  and gap areas (usually equal to area using the socalled Schmidt network ).
In pure mathematics , the stereographic projection has an expanded, more abstract meaning. It is also used for higherdimensional spaces, i.e. not just for mapping from threedimensional into twodimensional space.
Application examples
Astrolabe and star map
The astrolabe in picture 1 contains the northern sky. The projected stars (including the zodiac) are located on the Rete, which can be rotated around the image of the northern celestial pole ( Pole Star ) . The safiha is engraved on the solid base ( tympanum ), which consists of the images of the horizontal circles ( almucantarates ) concentric to the zenith , the horizon (image: a concave line) and the azimuth circles at right angles to it .
A star map similar to the rotatable Planisphere shown in Figure 2 is the useful, but cheaper followup product of the astrolabe, which in principle works in the same way. The interrupted circular arc is the ecliptic , a piece of an eccentric circle in the illustration of the polar pattern.
Cartography of the earth's surface
The easy drawing production (only circles and straight lines for circles on the earth's surface) and the angular accuracy were also used in ancient times for maps and for navigation. If the point of contact of the mapping plane is placed in a port city, for example, the shortest routes to destinations are shown as straight lines in all directions.
With the polar stereographic projection (the point of contact of the image plane is in the north or south pole), the meridians of the earth's geographic coordinate system are mapped as straight lines through the earth's pole (see Figure 3). The navigation elements geographical longitude and geographical latitude are therefore clearly displayed by this type of projection for navigation purposes at the poles. The depiction of the earth's poles as parts of the modern international world map is also carried out via stereographic projection.
In geophysics , maps of the distribution of forces or line structures on the globe are built on a stereographic network design.
Mathematical treatment
Conversion of image to object coordinates
Spherical ( as in Figure 2) and plane polar coordinates (radius , direction , as in Figure 3) are used for the object points .
An object point is mapped onto the image point .
The same reference direction is assumed for the angles and . Thus:
The distance (radial polar coordinate) can be seen from triangular observations (see Figure 3):
While the length of the arc on the sphere increases linearly from the point of contact to the circle of latitude, the radius in the plane increases progressively to infinity (up to the projection center). This socalled length distortion is the differential quotient of the normalized function according to :
Because of the strongly progressive increase in the distortion (infinitely large at ) the stereographic images remain limited in practice .



Geographical coordinates of the earth
If you want to depict the northern hemisphere stereographically, the following assignments result:
 The projection center coincides with the south pole, the point of contact with the north pole.
In this way, the latitudes appear in the projection plane as concentric circles around the point of contact (= north pole) and the longitudes as semi straight lines of origin .
The following applies to the southern hemisphere:
 The projection center coincides with the North Pole, the point of contact with the South Pole.
Geometry of plane curves
Let any curve in the plane be given in explicit polar coordinate representation . Now place the projection sphere with radius on the origin of coordinates, the tangential point TP. Through the projection center  the opposite point PZ on the spherical surface  a second plane is now laid, which is parallel to the original plane (i.e. it is created by parallel displacement of the first plane perpendicular to the same ). Now the given curve in the first plane is projected onto the sphere by means of stereographic projection in PZ. By using the original point TP as the new projection center, the curve on the sphere is projected onto the second plane by means of a further stereographic projection  it is described there in polar coordinates by . Then applies . The given curve has thus been inverted by this double stereographic projection on the circle with radius in the (parallel) image plane .
District loyalty
The rays from the projection center PZ (Fig.) To the original circle K (diameter points 1 and 2) form an oblique circular cone , the section K 'of which, parallel to K, is circular. The projection plane K ″ intersects the cone axis at the same angle as the section K ′, which is why the sectional figure lying in it is also a circle (points 1 ″ and 2 ″).
Important: The circle fidelity generally only applies to the circle line. The center of the object circle is z. B. not shown as the center of the image circle. Only the cases in which the circular cone is straight are excluded from this.
Other special features of stereographic projection are:
 The image of the projection center lies in infinity.
 All circles on the spherical surface are mapped as circles (circle fidelity).
 Circles through the center of the projection are shown as straight lines.
Spherical reflection (inversion)
A stereographic projection can also be interpreted as a reflection on a sphere (inversion) . From the properties of an inversion, the true to the circle and true to angle then immediately follow.
Generalization to ℝ ^{n}
The projection described above is the special case of general stereographic projection: In threedimensional space , the twodimensional spherical surface is mapped onto the map plane and thus into twodimensional space . The general illustration looks like this:
However, it is also possible to choose the archetype of this function so that its equator intersects the projection hyperplane :
This mapping is of course not defined for the point , the socalled North Pole. If you look at the figure , whose function term has instead of in the denominator, then the sphere is mapped to the south pole.
If the archetype of the stereographic projection is changed in this way, the two images and an atlas of the nsphere are obtained.
Derivation
The stereographic projection through the North Pole is derived here as an example. The same derivation can be used for the projection through the South Pole. The stereographic projection through the North Pole is intended to map a point of the sphere onto its image point in the hyperplane so that the image point lies on the straight line through the North Pole and .
This straight line can go through
can be parameterized. This straight line intersects the plane , where:
It follows that the coordinates of the intersection of and through
given are. If we now consider the plane as , we get the stereographic projection through the North Pole.
Inverse functions
In addition to the stereographic projections through the north and south poles, there are through
continuous inverse functions described . Hence, and are homeomorphisms . A possible atlas has been found with the projection from the North Pole and that from the South Pole . This shows that the sphere is a dimensional topological manifold .
District loyalty
Be a hyperplane in . If and , it follows from the plane equation of and the CauchySchwarz inequality :
The image of the points of the plane through satisfies the equation:
This is an equation of spheres . Therefore maps all sections from and to any hyperplane, especially spheres that lie in this hyperplane, onto spheres in .
Compactification of the complex number level
The stereographic projection can, among other things, be used to compact the complex number plane . One adds an additional point, which is referred to here with . The set is called the onepoint compactification of or Riemann number sphere .
The figure is created by means of the figure
continued. One calls now open exactly when open is in. This induces a topology.
Chordal metric
The same topology is achieved by the
induced defined chordal metric .
See also
literature
Sources for the mathematical explanations:
 Konrad Königsberger : Analysis. Volume 2. SpringerVerlag, Berlin a. a. 1993, ISBN 3540547231 .
 General description ndim. Sphere: Section 1.3.II, Conformity: Section 3.1.
 Günter Scheja, Uwe Storch : Textbook of Algebra. Volume 1. 2nd revised and expanded edition. Teubner, Stuttgart 1994, ISBN 3519122030 .
 Projective representation: Section VH Ex. 4.
 Günther Bollman, Günther Koch (ed.): Lexicon of cartography and geomatics. Volume 1: A to Karti. Spectrum Academic Publishing House, Heidelberg u. a. 2001, ISBN 382741055X .
Web links
 Animated explanation of the stereographic projection (German)
 Interactive threedimensional representation of the stereographic projection (English; Java applet )
 Comparison of different projections .
Individual evidence
 ↑ ^{a } ^{b} Mathematik.de: Circular related figures.
 ^ Guido Schmitz: Materialphysik I. Lecture notes. University of Münster, 2012, p. 2 f.
 ^ JeanPierre Burg: Structural geology: structural analysis of the polyphase defromation. Lecture notes (Chapter 10), ETH Zurich, 2017, p. 287 ff.
 ^ Elena Perk: Stereographic projection. ( Memento of the original from January 11, 2016 in the Internet Archive ) Info: The archive link was inserted automatically and has not yet been checked. Please check the original and archive link according to the instructions and then remove this notice. P. 2.
 ↑ Karl Horst Meyer: stereographic projection. P. 12.
 ↑ A fundamental difference is the mirror image of the sky on the astrolabe, because ancient astronomers preferred the view of the celestial sphere from outside.
 ↑ Here you can divide through . Because if this were equal to 0, the North Pole would be in the plane.