Gyrovirus: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
ce
Line 27: Line 27:


== Replication strategy ==
== Replication strategy ==
Viral replication is nuclear. Entry into the host cell is achieved by penetration into the host cell.<ref name=ViralZone /> Upon entering the host cell, the virus converts from single stranded to double stranded, circular DNA using host cell machinery. The circular dsDNA is then used as a template for transcription and for replication via a rolling circle mechanism similar to phiX174.<ref>Noteborn, Mathieu H. M.; Koch, Guus. “Chicken anaemia virus infection: Molecular basis of pathogenicity.” Avian Pathology, v. 24 issue 1, 1995, p. 11–31.</ref> DNA templated transcription, with some alternative splicing mechanism is the method of transcription. The virus exits the host cell by nuclear egress, and nuclear pore export.
Birds serve as the natural host. Transmission routes are fecal-oral, parental, egg transmission, and respiratory.<ref name=ViralZone />


{| class="wikitable sortable" style="text-align:center"
Upon entering the host cell, the virus converts from single stranded to double stranded, circular DNA using host cell machinery. The circular dsDNA is then used as a template for transcription and for replication via a rolling circle mechanism similar to phiX174.<ref>Noteborn, Mathieu H. M.; Koch, Guus. “Chicken anaemia virus infection: Molecular basis of pathogenicity.” Avian Pathology, v. 24 issue 1, 1995, p. 11–31.</ref>
|-
! Genus !! Host Details !! Tissue Tropism !! Entry Details !! Release Details !! Replication Site !! Assembly Site !! Transmission
|-
|Gyrovirus||Birds||Chicken: Thymocytes, erythrobalstoid cells; Egg: embryonal tissues and eggshell membrane||Cell receptor endocytosis||Budding||Nucleus||Nucleus||Horizontal: oral-fecal; vertical: bird to egg
|}


== Chicken anemia virus ==
== Chicken anemia virus ==

Revision as of 15:56, 17 June 2015

Gyrovirus
Virus classification
Group:
Group II (ssDNA)
Family:
Genus:
Gyrovirus
Species

Chicken anemia virus
Gyrovirus 4
Human gryovirus
Human gryovirus 3

The genus Gyrovirus, the only well known species being the chicken anemia virus, is a part of the family of Circoviridae, and consists of a nonenveloped, round, icosahedral capsid, 19–27 nm in diameter. The genome contained within consists of a single molecule of circular, single-stranded negative-sense DNA that forms a closed circle. The complete genome is 2290–2320 nucleotides long. They are primarily vertebrate viruses.[1]

Capsid

Gyroviruses have an average size of 19 to 27 nanometers. They are nonenveloped and have an icosahedral capsid with T=1 symmetry. The unique, single protein, trumpet-shaped capsomeres of Gyrovirus are arranged into 12 pentomers yielding a capsid 60 units in size.[2]

Genome

Alignment of the nucleotide sequences of the human gyrovirus genome on the basis of a 138-bp segment (nt 1328–1465) of the viral protein 1 gene. The sequences of the isolate from France (FR823283) and of the 6 isolates found in this http://wwwnc.cdc.gov/eid/article/18/6/12-0179_article.htm study are shown. Nucleotide positions are according to isolate FR823283 (1). Hyphens indicate identity with the prototype sequence of isolate FR823283 (1).

The Gyrovirus genome consists of negative sense, single-stranded, circular, DNA. The genome is relatively small at 2,300 nucleotides. and contains three overlapping open reading frames that code for only three known proteins.[3]

Proteins

The Gyrovirus genome codes for a single polysistronic mRNA that subsequently codes for three proteins, VP1, VP2, and VP3. VP1 is the 51kd capsid protein; in addition to its structural function, it also contains motifs for rolling circle replication in the C-terminal region. VP2 is a 23kd nonstructural protein with phosphatase activity. Virions with mutations in SP2 are still replication competent; however, their cytopathic effects were highly attenuated.[4] VP3, also called apoptin, is a 13kd protein that has been shown to independently induce apoptosis in chicken cells. Apoptin is also being researched for its ability to induce apoptosis in human tumor cells.[5][6]

Replication strategy

Viral replication is nuclear. Entry into the host cell is achieved by penetration into the host cell.[7] Upon entering the host cell, the virus converts from single stranded to double stranded, circular DNA using host cell machinery. The circular dsDNA is then used as a template for transcription and for replication via a rolling circle mechanism similar to phiX174.[8] DNA templated transcription, with some alternative splicing mechanism is the method of transcription. The virus exits the host cell by nuclear egress, and nuclear pore export. Birds serve as the natural host. Transmission routes are fecal-oral, parental, egg transmission, and respiratory.[7]

Genus Host Details Tissue Tropism Entry Details Release Details Replication Site Assembly Site Transmission
Gyrovirus Birds Chicken: Thymocytes, erythrobalstoid cells; Egg: embryonal tissues and eggshell membrane Cell receptor endocytosis Budding Nucleus Nucleus Horizontal: oral-fecal; vertical: bird to egg

Chicken anemia virus

Chicken anemia virus (CAV) is currently the only known member of Gyrovirus. The disease has been described worldwide in areas where chickens are produced. CAV causes severe anemia, hemorrhaging, and depletion of lymphoid tissue through the destruction of bone marrow erythroblastoid cells.[3] The disease affects mainly young chicks not protected by maternal antibodies. Age resistance to disease begins at about one week, but can be overcome however by coinfection with immunosuppressive diseases, such as bursal disease virus, Marek’s disease, and others.[9]

A second virus in this genus—Avian gyrovirus 2—has been described.[10] The viral genome shares ~40% of its sequence with Chicken anemia virus (CAV). The genome is 2383 nucleotides long and has three partially overlapping open reading frames encoding the proteins VP1, VP2 and VP3. These proteins share 38.8%, 40.3%, and 32.2% amino acid identities between their homologs in the CAV.

Two species have been described from humans—human gyrovirus and human gyrovirus 3.[11][12][13] Human gyrovirus 1 appears to be the same virus as avian gyrovirus 2. A fourth gyrovirus—gyrovirus 4 (GyV4)—has been isolated from human stool and chicken meat.[14]

Literature

  1. ^ ICTVdB Management (2006). 00.016.0.02. Gyrovirus. In: ICTVdB—The Universal Virus Database, version 4. Büchen-Osmond, C. (Ed), Columbia University, New York, USA.
  2. ^ Crowther, R. A., et al. “Comparison of the structures of three circoviruses: Chicken anemia virus, porcine circovirus type 2, and beak and feather disease virus.” Journal of Virology, v. 77 issue 24, 2003, p. 13036–13041.
  3. ^ a b Noteborn M.H.M., et al. “Characterization of Cloned Chicken Anemia Virus DNA That Contains All Elements For The Infectious Replication Cycle.” Journal of Virology, v. 65 issue 6, 1991, p. 3131–3139.
  4. ^ Peters, Michelle A.; Crabb, Brendan S.; Tivendale, Kelly A.; Browning, Glenn F. “Attenuation of chicken anemia virus by site-directed mutagenesis of VP2.” Journal of General Virology, v. 88 issue Part 8, 2007, p. 2168–2175.
  5. ^ Noteborn, M. H. M., et al. “A single chicken anemia virus protein induces apoptosis.” Journal of Virology, v. 68 issue 1, 1994, p. 346–351.
  6. ^ Heckl, Stefan, et al. “Value of apoptin's 40-amino-acid C-terminal fragment for the differentiation between human tumor and non-tumor cells.” Apoptosis, v. 13 issue 4, 2008, p. 495–508.
  7. ^ a b Cite error: The named reference ViralZone was invoked but never defined (see the help page).
  8. ^ Noteborn, Mathieu H. M.; Koch, Guus. “Chicken anaemia virus infection: Molecular basis of pathogenicity.” Avian Pathology, v. 24 issue 1, 1995, p. 11–31.
  9. ^ Merck Veterinary Manual (online) Accessed 4/20/2009 Chicken Anemia Virus Infection: Introduction http://www.merckvetmanual.com/mvm/index.jsp?cfile=htm/bc/200200.htm&word=chicken%2canemia%2cvirus
  10. ^ Rijsewijk FA, Dos Santos HF, Teixeira TF, Cibulski SP, Varela AP, Dezen D, Franco AC, Roehe PM (2011) Discovery of a genome of a distant relative of chicken anemia virus reveals a new member of the genus Gyrovirus. Arch Virol.
  11. ^ Sauvage V, Cheval J, Foulongne V, Gouilh MA, Pariente K, Manuguerra JC, Richardson J, Dereure O, Lecuit M, Burguiere A, Caro V, Eloit M (2011) Identification of the first human gyrovirus, a virus related to chicken anemia virus. J Virol 85(15):7948–7950
  12. ^ Maggi F, Macera L, Focosi D, Vatteroni ML, Boggi U, Antonelli G, Eloit M, Pistello M (2012) Human gyrovirus DNA in human blood, Italy. Emerg Infect Dis 18(6):956–9. doi: 10.3201/eid1806.120179.
  13. ^ Phan TG, Li L, O'Ryan MG, Cortes H, Mamani N, Bonkoungou IJ, Wang C, Leutenegger CM, Delwart E (2012) A third gyrovirus species in human faeces. J Gen Virol 93(6):1356–1361.
  14. ^ Chu DK, Poon LL, Chiu SS, Chan KH, Ng EM, Bauer I, Cheung TK, Ng IH, Guan Y, Wang D, Peiris JS (2012) Characterization of a novel gyrovirus in human stool and chicken meat. J Clin Virol 55(3):209–213 doi: 10.1016/j.jcv.2012.07.001

External links