Electrochemical equivalent

from Wikipedia, the free encyclopedia

The electrochemical equivalente ) indicates how many grams of a substance are deposited during electrolysis on an electrode by an electrical charge of one coulomb (or one ampere hour ). It is equal to the molar mass M divided by the product of the change in the valency or the oxidation number z of the substance and the Faraday constant F:

The electrochemical equivalent is an important parameter in electroplating . For each single charge of one mole, 96485.336 As / mol (Faraday constant) are required for reduction or oxidation.

The charge actually required for the deposition is often greater than the value calculated with the aid of the electrochemical equivalent due to side reactions; this is then taken into account via the current yield.

background

According to Faraday's First Law in its original version, the mass of a substance deposited during electrolysis is proportional to the electrical charge that has flowed. The electrochemical equivalent is the proportionality factor between charge Q and deposited mass m :

The formula given above results from Faraday's second law, according to which the mass of the converted substance is proportional to its molar mass.

Table of values ​​for electrochemical equivalents

The SI unit of the electrochemical equivalent is g / C or g / As. In electroplating, charges are usually measured in ampere hours (Ah); The unit g / Ah is therefore also used for Ä e .

Selected examples of calculated electrochemical equivalents Ä e
element OZ Sb. Molar mass
[g / mol]

Change in
value

[µmol / As]
Ä e
[mg / As]
Ä e
[g / Ah]
Type Application examples, comments
aluminum 13 Al 26.98154 3 3.45476 0.09321 0.33557 M. Aluminum production 3 ↔ 0
antimony 51 Sb 121.76 3 3.45476 0.42065 1.51434 SG −3 ↔ 0 or 3 ↔ 0
antimony 51 Sb 121.76 5 2.07285 0.25239 0.90861 SG 5 ↔ 0
antimony 51 Sb 121.76 2 5.18213 0.63098 2.27152 SG 5 ↔ 3
barium 56 Ba 137.327 2 5.18213 0.71165 2.56193 EAM 2 ↔ 0
beryllium 4th Be 9.01218 2 5.18213 0.04670 0.16813 EAM 2 ↔ 0
Bismuth 83 Bi 208.9804 3 3.45476 0.72198 2.59912 SG 3 ↔ 0
lead 82 Pb 207.2 4th 2.59107 0.53687 1.9327 M. 4 ↔ 0
lead 82 Pb 207.2 2 5.18213 1.0737 3.8655 M. Lead battery 4 ↔ 2 or 2 ↔ 0
bromine 35 Br 79.904 1 10.3643 0.82815 2.98133 H −1 ↔ 0
cadmium 48 CD 112.414 2 5.18213 0.58254 2.09716 M. 2 ↔ 0
Cesium 55 Cs 132.90545 1 10.3643 1.37747 4.95888 AT THE 1 ↔ 0
Calcium 20th Approx 40.078 2 5.18213 0.20769 0.74768 EAM 2 ↔ 0
chlorine 17th Cl 35.45 1 10.3643 0.3674 1.3227 H Chlor-alkali electrolysis −1 ↔ 0
chrome 24 Cr 51.9961 3 3.45476 0.17963 0.64668 M. Chrome plating 3 ↔ 0
chrome 24 Cr 51.9961 6th 1.72738 0.08982 0.32334 M. Chrome plating 6 ↔ 0
Cobalt 27 Co 58.93319 2 5.18213 0.30540 1.09944 M. 2 ↔ 0
iron 26th Fe 55.845 2 5.18213 0.28940 1.04183 M. Iron coating 2 ↔ 0
iron 26th Fe 55.845 3 3.45476 0.19293 0.69455 M. 3 ↔ 0
iron 26th Fe 55.845 1 10.3643 0.57879 2.08365 M. 3 ↔ 2
fluorine 9 F. 18.9984 1 10.3643 0.19690 0.70886 H Fluorine production −1 ↔ 0
gold 79 Au 196.96657 1 10.3643 2.04141 7.34909 M. Au (I) only stable in complexes
gold 79 Au 196.96657 3 3.45476 0.68047 2.4497 M. 3 ↔ 0
Iodine 53 I. 126.90447 1 10.3643 1.31527 4.73498 H −1 ↔ 0
potassium 19th K 39.0983 1 10.3643 0.40523 1.45881 AT THE 1 ↔ 0
copper 29 Cu 63,546 2 5.18213 0.32930 1.18549 M. Electrolytic copper refining 2 ↔ 0
copper 29 Cu 63,546 1 10.3643 0.65861 2,37099 M. 1 ↔ 0
lithium 3 Li 6.94 1 10.3643 0.0719 0.2589 AT THE Lithium production 1 ↔ 0
magnesium 12 Mg 24.305 2 5.18213 0.12595 0.45343 EAM Magnesium production 2 ↔ 0
manganese 25th Mn 54.93804 7th 1.48061 0.08134 0.29283 M. 7 ↔ 0
manganese 25th Mn 54.93804 2 5.18213 0.28470 1.02491 M.
manganese 25th Mn 54.93804 1 10.3643 0.56939 2.04981 M. Zinc-manganese cells 4 ↔ 3 or 3 ↔ 2
manganese 25th Mn 54.93804 3 3.45476 0.18980 0.68327 M.
sodium 11 N / A 22.98977 1 10.3643 0.23827 0.85778 AT THE Sodium production 1 ↔ 0
nickel 28 Ni 58.6934 2 5.18213 0.30416 1.09497 M. galvanic nickel plating 2 ↔ 0
niobium 41 Nb 92.90637 5 2.07285 0.19258 0.69329 M.
palladium 46 Pd 106.42 2 5.18213 0.55148 1.98534 M. 2 ↔ 0
platinum 78 Pt 195.084 4th 2.59107 0.50548 1.81971 M. 4 ↔ 0
platinum 78 Pt 195.084 2 5.18213 1.01095 3,63943 M. 4 ↔ 2 or 2 ↔ 0
mercury 80 Ed 200.592 2 5.18213 1.03949 3.74218 M.
mercury 80 Ed 200.592 1 10.3643 2.07899 7,48436 M.
Rhodium 45 Rh 102.90549 3 3.45476 0.35551 1.27985 M. 3 ↔ 0
Rubidium 37 Rb 85.4678 1 10.3643 0.88581 3.18892 AT THE 1 ↔ 0
oxygen 8th O 15.9994 2 5.18213 0.08291 0.29848 Ch Water electrolysis −2 ↔ 0
sulfur 16 S. 32.06 2 5.18213 0.1661 0.5981 Ch −2 ↔ 0
selenium 34 Se 78.971 2 5.18213 0.40924 1.47326 Ch −2 ↔ 0
silver 47 Ag 107.8682 1 10.3643 1.11798 4.02471 M. 1 ↔ 0
strontium 38 Sr 87.62 2 5.18213 0.4541 1.6346 EAM 2 ↔ 0
Tantalum 73 Ta 180.94788 5 2.07285 0.37508 1.35028 M. 5 ↔ 0
Thallium 81 Tl 204,382 3 3.45476 0.70609 2.54192 M. 3 ↔ 0
Thallium 81 Tl 204,382 1 10.3643 2.11827 7.62577 M. 1 ↔ 0
titanium 22nd Ti 47.867 4th 2.59107 0.12403 0.44650 M. 4 ↔ 0
Vanadium 23 V 50.9415 5 2.07285 0.10559 0.38014 M. 5 ↔ 0
hydrogen 1 H 1.0074 1 10.3643 0.01044 0.03759 Hy Water electrolysis
tungsten 74 W. 183.84 4th 2.59107 0.47634 1.71483 M. 4 ↔ 0
zinc 30th Zn 65.38 2 5.18213 0.3388 1.2197 M. galvanic zinc plating
tin 50 Sn 118.71 2 5.18213 0.61517 2.21462 M. galvanic tinning 4 ↔ 2 or 2 ↔ 0
tin 50 Sn 118.71 4th 2.59107 0.30759 1.10731 M. 4 ↔ 0
Zirconium 40 Zr 91.224 4th 2.59107 0.23637 0.85092 M. 4 ↔ 0

literature

  • Werner John, Bernhard Gaida, Technical Mathematics for Electroplating, 9th Edition 2007, Eugen G. Leuze Verlag, Bad Saulgau, ISBN 978-3-87480-230-7

See also: equivalent number , valence (chemistry)