Chromium

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 75.147.98.41 (talk) at 16:12, 25 September 2008 (→‎History). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Chromium, 24Cr
Chromium
Appearancesilvery metallic
Standard atomic weight Ar°(Cr)
Chromium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson


Cr

Mo
vanadiumchromiummanganese
Atomic number (Z)24
Groupgroup 6
Periodperiod 4
Block  d-block
Electron configuration[Ar] 3d5 4s1
Electrons per shell2, 8, 13, 1
Physical properties
Phase at STPsolid
Melting point2180 K ​(1907 °C, ​3465 °F)
Boiling point2944 K ​(2671 °C, ​4840 °F)
Density (at 20° C)7.192 g/cm3[3]
when liquid (at m.p.)6.3 g/cm3
Heat of fusion21.0 kJ/mol
Heat of vaporization347 kJ/mol
Molar heat capacity23.35 J/(mol·K)
Vapor pressure
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 1656 1807 1991 2223 2530 2942
Atomic properties
Oxidation states−4, −2, −1, 0, +1, +2, +3, +4, +5, +6 (depending on the oxidation state, an acidic, basic, or amphoteric oxide)
ElectronegativityPauling scale: 1.66
Ionization energies
  • 1st: 652.9 kJ/mol
  • 2nd: 1590.6 kJ/mol
  • 3rd: 2987 kJ/mol
  • (more)
Atomic radiusempirical: 128 pm
Covalent radius139±5 pm
Color lines in a spectral range
Spectral lines of chromium
Other properties
Natural occurrenceprimordial
Crystal structurebody-centered cubic (bcc) (cI2)
Lattice constant
Body-centered cubic crystal structure for chromium
a = 288.49  pm (at 20 °C)[3]
Thermal expansion4.81×10−6/K (at 20 °C)[3]
Thermal conductivity93.9 W/(m⋅K)
Electrical resistivity125 nΩ⋅m (at 20 °C)
Magnetic orderingantiferromagnetic (rather: SDW)[4]
Molar magnetic susceptibility+280.0×10−6 cm3/mol (273 K)[5]
Young's modulus279 GPa
Shear modulus115 GPa
Bulk modulus160 GPa
Speed of sound thin rod5940 m/s (at 20 °C)
Poisson ratio0.21
Mohs hardness8.5
Vickers hardness1060 MPa
Brinell hardness687–6500 MPa
CAS Number7440-47-3
History
Discovery and first isolationLouis Nicolas Vauquelin (1794, 1797)
Isotopes of chromium
Main isotopes[6] Decay
abun­dance half-life (t1/2) mode pro­duct
50Cr 4.34% stable
51Cr synth 27.7025 d ε 51V
γ
52Cr 83.8% stable
53Cr 9.50% stable
54Cr 2.37% stable
 Category: Chromium
| references

Chromium (Template:PronEng) is a chemical element which has the symbol Cr and atomic number 24. It is a steely-gray, lustrous, hard metal that takes a high polish and has a high melting point. It is also odourless, tasteless, and malleable. Chromium was named after the Greek word "Chrōma" (χρωμα) meaning color, because of the many colorful compounds made from it.[7]

History

The history of chromium dates back thousands of years. Weapons found in burial pits dating from the late 3rd century BC Qin Dynasty of the Terracotta Army near Xi'an, China have been analyzed by archaeologists. Although buried more than 2,000 years ago, the ancient bronze tips of crossbow bolts and swords found at the site showed no sign of corrosion, because the Qin era Chinese had coated the bronze in chromium.[8]

Chromium did not come to the attention of westerners until the 18th century. On 26 July 1761, Johann Gottlob Lehmann found an orange-red mineral in the Ural Mountains which he named Siberian red lead. Though misidentified as a lead compound with selenium and iron components, the material was in fact lead chromate with a formula of PbCrO4, now known as the mineral crocoite.[citation needed]

In 1770, Peter Simon Pallas visited the same site as Lehmann and found a red lead mineral that had very useful properties as a pigment in paints. The use of Siberian red lead as a paint pigment developed rapidly. A bright yellow made from crocoite also became fashionable.[citation needed]

In 1797, Louis Nicolas Vauquelin received samples of crocoite ore. He was able to produce chromium oxide (CrO3) by mixing crocoite with hydrochloric acid. In 1798, Vauquelin discovered that he could isolate metallic chromium by heating the oxide in a charcoal oven. He was also able to detect traces of chromium in precious gemstones, such as ruby, or emerald. Later that year he successfully isolated elemental chromium.[citation needed]

During the 1800s, chromium was primarily used as a component of paints and in tanning salts but now metal alloys account for 85% of the use of chromium. The remainder is used in the chemical industry and refractory and foundry industries.[citation needed]

Occurrence and production

World production trend

Chromium is mined as chromite (FeCr2O4) ore. About two-fifths of the chromite ores and concentrates in the world are produced in South Africa, while Kazakhstan, India, Russia, and Turkey are also substantial producers. Untapped chromite deposits are plentiful, but geographically concentrated in Kazakhstan and southern Africa.[citation needed]

Approximately 15 million tons of marketable chromite ore were produced in 2000, and converted into approximately 4 million tons of ferro-chrome with an approximate market value of 2.5 billion United States dollars.[citation needed]

Though native chromium deposits are rare, some native chromium metal has been discovered. The Udachnaya Mine in Russia produces samples of the native metal. This mine is a kimberlite pipe rich in diamonds, and the reducing environment so provided helped produce both elemental chromium and diamond. (See also chromium minerals)[citation needed]

Chromium is obtained commercially by heating the ore in the presence of aluminium or silicon.[citation needed]

Chemical properties

Chromium

Chromium is a member of the transition metals, in group 6. Chromium(0) has an electronic configuration of 4s13d5, due to the lower energy of the high spin configuration. Chromium exhibits a wide range of possible oxidation states. The most common oxidation states of chromium are +2, +3, and +6, with +3 being the most stable. +1, +4 and +5 are rare. Chromium compounds of oxidation state +6 are powerful oxidants.

Chromium is passivated by oxygen, forming a thin protective oxide surface layer with another element such as nickel or iron. This layer is a spinel structure only a few atoms thick and is very dense, preventing diffusion of oxygen into the underlying material. (In iron or plain carbon steels the oxygen migrates into the underlying material.) Chromium is usually plated on top of a nickel layer which may first have been copper plated. Chromium, unlike metals such as iron and nickel, does not suffer from hydrogen embrittlement. It does suffer from nitrogen embrittlement and hence no straight chromium alloy has ever been developed. Below, the pourbaix diagram can be seen. It is important to understand that the diagram only displays the thermodynamic data and it does not display any details of the rates of reaction.

The Pourbaix diagram for chromium in pure water, perchloric acid or sodium hydroxide[9]

Compounds

Potassium dichromate is a powerful oxidizing agent and is the preferred compound for cleaning laboratory glassware of any trace organics. It is used as a saturated solution in concentrated sulfuric acid for washing the apparatus. For this purpose, however, sodium dichromate is sometimes used because of its higher solubility (5 g/100 ml vs. 20 g/100 ml respectively). Chrome green is the green oxide of chromium, Cr2O3, used in enamel painting, and glass staining. Chrome yellow is a brilliant yellow pigment, PbCrO4, used by painters.

Chromic acid has the hypothetical structure H2CrO4. Neither chromic nor dichromic acid is found in nature, but their anions are found in a variety of compounds. Chromium trioxide, CrO3, the acid anhydride of chromic acid, is sold industrially as "chromic acid".

Chromium and the quintuple bond

The compound synthesized by Nguyen, which was determined experimentally to contain a Cr-Cr quintuple bond

Chromium is notable for its ability to form quintuple covalent bonds. The synthesis of a compound of chromium(I) and a hydrocarbon radical was shown via X-ray diffraction to contain a quintuple bond of length 183.51(4) pm (1.835 angstroms) joining the two central chromium atoms.[10] This was accomplished through the use of an extremely bulky monodentate ligand which through its sheer size prevents further coordination. Chromium currently remains the only element for which quintuple bonds have been observed.

Applications

Uses of chromium:

Biological role

Trivalent chromium (Cr(III) or Cr3+) is required in trace amounts for sugar metabolism in humans (Glucose Tolerance Factor) and its deficiency may cause a disease called chromium deficiency. In contrast, hexavalent chromium (Cr(VI) or Cr6+) is very toxic and mutagenic when inhaled, as publicized by the film Erin Brockovich. Cr(VI) has not been established as a carcinogen when in solution, though it may cause allergic contact dermatitis (ACD).[12]

The popular dietary supplement chromium picolinate complex generates chromosome damage in hamster cells. In the United States the dietary guidelines for daily chromium uptake were lowered from 50-200 µg for an adult to 35 µg (adult male) and to 25 µg (adult female).[13]

Isotopes

Naturally occurring chromium is composed of three stable isotopes; 52Cr, 53Cr, and 54Cr with 52Cr being the most abundant (83.789% natural abundance). Nineteen radioisotopes have been characterized with the most stable being 50Cr with a half-life of (more than) 1.8x1017 years, and 51Cr with a half-life of 27.7 days. All of the remaining radioactive isotopes have half-lives that are less than 24 hours and the majority of these have half-lives that are less than 1 minute. This element also has 2 meta states.

53Cr is the radiogenic decay product of 53Mn. Chromium isotopic contents are typically combined with manganese isotopic contents and have found application in isotope geology. Mn-Cr isotope ratios reinforce the evidence from 26Al and 107Pd for the early history of the solar system. Variations in 53Cr/52Cr and Mn/Cr ratios from several meteorites indicate an initial 53Mn/55Mn ratio that suggests Mn-Cr isotope systematics must result from in-situ decay of 53Mn in differentiated planetary bodies. Hence 53Cr provides additional evidence for nucleosynthetic processes immediately before coalescence of the solar system.

The isotopes of chromium range in atomic weight from 43 u (43Cr) to 67 u (67Cr). The primary decay mode before the most abundant stable isotope, 52Cr, is electron capture and the primary mode after is beta decay.

Precautions

Chromium metal and chromium(III) compounds are not usually considered health hazards; chromium is an essential trace mineral.[14] However, hexavalent chromium (chromium VI) compounds can be toxic if ingested or inhaled. The lethal dose of poisonous chromium (VI) compounds is about one half teaspoon of material. Most chromium (VI) compounds are irritating to eyes, skin and mucous membranes. Chronic exposure to chromium (VI) compounds can cause permanent eye injury, unless properly treated. Chromium(VI) is an established human carcinogen. An investigation into hexavalent chromium release into drinking water formed the plot of the motion picture Erin Brockovich.

World Health Organization recommended maximum allowable concentration in drinking water for chromium (VI) is 0.05 milligrams per liter. Hexavalent chromium is also one of the substances whose use is restricted by the European Restriction of Hazardous Substances Directive.

In some parts of Russia, pentavalent chromium was reported as one of the factors of incidence of premature senility. [15]

Chromium salts (chromates) are also the cause of allergic reactions in some people. Chromates are often used to manufacture, amongst other things, leather products, paints, cement, mortar and anti-corrosives. Contact with products containing chromates leads to allergic contact dermatitis and irritant dermatitis, resulting in ulceration of the skin, sometimes referred to as "chrome ulcers". This condition is often found in workers that have been exposed to strong chromate solutions in electroplating, tanning and chrome-producing manufacturers. [16]

As chromium compounds were used in dyes and paints and the tanning of leather, these compounds are often found in soil and groundwater at abandoned industrial sites, now needing environmental cleanup and remediation per the treatment of brownfield land. Primer paint containing hexavalent chromium is still widely used for aerospace and automobile refinishing applications.

See also

References

  1. ^ "Standard Atomic Weights: Chromium". CIAAW. 1983.
  2. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  3. ^ a b c Arblaster, John W. (2018). Selected Values of the Crystallographic Properties of Elements. Materials Park, Ohio: ASM International. ISBN 978-1-62708-155-9.
  4. ^ Fawcett, Eric (1988). "Spin-density-wave antiferromagnetism in chromium". Reviews of Modern Physics. 60: 209. Bibcode:1988RvMP...60..209F. doi:10.1103/RevModPhys.60.209.
  5. ^ Weast, Robert (1984). CRC, Handbook of Chemistry and Physics. Boca Raton, Florida: Chemical Rubber Company Publishing. pp. E110. ISBN 0-8493-0464-4.
  6. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  7. ^ van der Krogt, Peter, Chromium, retrieved 2008-08-24
  8. ^ Cotterell, Maurice. (2004). The Terracotta Warriors: The Secret Codes of the Emperor's Army. Rochester: Bear and Company. ISBN 159143033X. Page 102.
  9. ^ Ignasi Puigdomenech, Hydra/Medusa Chemical Equilibrium Database and Plotting Software (2004) KTH Royal Institute of Technology, freely downloadable software at [1]
  10. ^ T. Nguyen, A. D. Sutton, M. Brynda, J. C. Fettinger, G. J. Long and P. P. Power (2005). "Synthesis of a Stable Compound with Fivefold Bonding Between Two Chromium(I) Centers". Science. 310 (5749): 844–847. doi:10.1126/science.1116789. PMID 16179432.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  11. ^ United States Patent 7271278
  12. ^ "ToxFAQs: Chromium". Agency for Toxic Substances & Disease Registry, Centers for Disease Control and Prevention. 2001. Retrieved 2007-10-02. {{cite web}}: Unknown parameter |month= ignored (help)
  13. ^ Vincent, J.B. (2007). "Recent advances in the nutritional biochemistry of trivalent chromium". Proceedings of the Nutrition Society. 63 (01): 41–47. doi:10.1079/PNS2003315.
  14. ^ "Chromium". Wellness Letter.
  15. ^ Chromium Toxicity on the Corrosion Doctors Web site maintained by Canadian Physical Chemist, Pierre R. Roberge, PhD, P.Eng.
  16. ^ "Chrome Contact Allergy". DermNet NZ.

External links