This list of mathematical symbols  shows a selection of the most common symbols  used in modern mathematical notation  within formulas  . Since it is practically impossible to list all symbols ever used in mathematics, only those symbols are given in this list that appear frequently in mathematics class  or in mathematics study  . Many of the symbols are standardized  , for example in DIN 1302   General mathematical symbols  or DIN EN ISO 80000-2   sizes and units - Part 2: Mathematical symbols for science and technology  .
The following list is largely limited to non-alphanumeric characters  . It is divided into sub-areas of mathematics  and grouped according to content within the sub-areas. Some symbols have different meanings depending on the context and accordingly appear several times in the list. Further information on the symbols and their meaning can be found in the linked articles.
Explanation 
 
The following information is provided for each math symbol:
symbol 
The symbol as represented by LaTeX  . If there are several typographical variants, only one of the variants is shown. 
use 
An exemplary use of the symbol within a formula. Letters are used as placeholders for numbers  , variables  or more complex expressions  . Different uses are listed separately. 
interpretation 
A brief textual description of the meaning of the formula in the previous column. 
items 
The Wikipedia article that covers the meaning ( semantics  ) of the symbol. 
Latex 
The LaTeX command used to create the symbol. Characters from the ASCII  character set can with a few exceptions ( double cross  , backslash  , braces  , percent sign  be used directly). Superscripts  and subscripts are  made using the characters ^and _and are not explicitly specified. 
HTML 
The symbol in HTML  if it is defined as a named character  . Unnamed characters can be represented by specifying the Unicode code point in  the following column in the form &#xnnnn;, where nnnnthe hexadecimal is Unicode. Superscripts and subscripts are made using <sup></sup>and <sub></sub>. 
Unicode 
The code point of the corresponding Unicode  character. Some characters are combining  and require additional characters to be entered. In the case of brackets, the code points of the opening and closing brackets are specified. 
 
Set theory  
Quantity construction  
symbol
 
use
 
interpretation
 
items
 
Latex
 
HTML
 
Unicode
 
 
  
    
      
        ∅ 
       
     
    {\ displaystyle \ varnothing} 
   
  
 
  
    
      
        { 
          
        } 
       
     
    {\ displaystyle \ {\ \}} 
   
  
 
empty set
 
Empty set 
 
\varnothing,\emptyset
 
∅
 
U+2205
 
 
  
    
      
        { 
          
        } 
       
     
    {\ displaystyle \ {~ \}} 
   
  
 
  
    
      
        { 
        a 
        , 
        b 
        , 
        ... 
        } 
       
     
    {\ displaystyle \ {a, b, \ ldots \}} 
   
  
 
Set consisting of the elements , and so on
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
 
  
    
      
        b 
       
     
    {\ displaystyle b} 
   
  
Set (mathematics)  , class (set theory) 
 
\{ \}
 
 
U+007B/D
 
 
  
    
      
        ∣ 
       
     
    {\ displaystyle \ mid} 
   
  
 
  
    
      
        { 
        a 
        ∣ 
        T 
        ( 
        a 
        ) 
        } 
       
     
    {\ displaystyle \ {a \ mid T (a) \}} 
   
  
 
Set or class of elements that meet
 the condition
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
 
  
    
      
        T 
        ( 
        a 
        ) 
       
     
    {\ displaystyle T (a)} 
   
  
\mid
 
 
U+007C
 
 
  
    
      
        : 
       
     
    {\ displaystyle \ colon} 
   
  
 
  
    
      
        { 
        a 
        : 
        T 
        ( 
        a 
        ) 
        } 
       
     
    {\ displaystyle \ {a: T (a) \}} 
   
  
 
:
 
 
U+003A
 
 
 
Set operations  
symbol
 
use
 
interpretation
 
items
 
Latex
 
HTML
 
Unicode
 
 
  
    
      
        ∪ 
       
     
    {\ displaystyle \ cup} 
   
  
 
  
    
      
        A. 
        ∪ 
        B. 
       
     
    {\ displaystyle A \ cup B} 
   
  
 
Union of sets and
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        B. 
       
     
    {\ displaystyle B} 
   
  
 
Union set 
 
\cup
 
∪
 
U+222A
 
 
  
    
      
        ∩ 
       
     
    {\ displaystyle \ cap} 
   
  
 
  
    
      
        A. 
        ∩ 
        B. 
       
     
    {\ displaystyle A \ cap B} 
   
  
 
Average of the quantities and
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        B. 
       
     
    {\ displaystyle B} 
   
  
 
Intersection 
 
\cap
 
∩
 
U+2229
 
 
  
    
      
        ∖ 
       
     
    {\ displaystyle \ setminus} 
   
  
 
  
    
      
        A. 
        ∖ 
        B. 
       
     
    {\ displaystyle A \ setminus B} 
   
  
 
Difference in quantities and
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        B. 
       
     
    {\ displaystyle B} 
   
  
 
Difference amount 
 
\setminus
 
 
U+2216
 
 
  
    
      
        △ 
       
     
    {\ displaystyle \ triangle} 
   
  
 
  
    
      
        A. 
         
        △ 
         
        B. 
       
     
    {\ displaystyle A \, \ triangle \, B} 
   
  
 
symmetrical difference of the quantities and
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        B. 
       
     
    {\ displaystyle B} 
   
  
 
Symmetrical difference 
 
\triangle
 
Δ
 
U+2206
 
 
  
    
      
        × 
       
     
    {\ displaystyle \ times} 
   
  
 
  
    
      
        A. 
        × 
        B. 
       
     
    {\ displaystyle A \ times B} 
   
  
 
Cartesian product of the sets and
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        B. 
       
     
    {\ displaystyle B} 
   
  
 
Cartesian product 
 
\times
 
×
 
U+2A2F
 
 
  
    
      
        
          
            
              ∪ 
              ˙ 
             
           
         
       
     
    {\ displaystyle {\ dot {\ cup}}} 
   
  
 
  
    
      
        A. 
         
        
          
            
              ∪ 
              ˙ 
             
           
         
         
        B. 
       
     
    {\ displaystyle A \, {\ dot {\ cup}} \, B} 
   
  
 
Union of disjoint sets and
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        B. 
       
     
    {\ displaystyle B} 
   
  
 
Disjoint union 
 
\dot\cup
 
 
U+228D
 
 
  
    
      
        ⊔ 
       
     
    {\ displaystyle \ sqcup} 
   
  
 
  
    
      
        A. 
        ⊔ 
        B. 
       
     
    {\ displaystyle A \ sqcup B} 
   
  
 
Disjoint union of the sets and
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        B. 
       
     
    {\ displaystyle B} 
   
  
 
\sqcup
 
 
U+2294
 
 
  
    
      
        
          
           
          
            
              C. 
             
           
         
       
     
    {\ displaystyle {} ^ {\ mathrm {C}}} 
   
  
 
  
    
      
        
          A. 
          
            
              C. 
             
           
         
       
     
    {\ displaystyle A ^ {\ mathrm {C}}} 
   
  
 
Complement of the crowd 
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
  
 
Complement (set theory) 
 
\mathrm{C}
 
 
U+2201
 
 
  
    
      
        
          
            
                
                
             
            ¯ 
           
         
       
     
    {\ displaystyle {\ overline {~~}}} 
   
  
 
  
    
      
        
          
            A. 
            ¯ 
           
         
       
     
    {\ displaystyle {\ overline {A}}} 
   
  
 
\bar
 
 
U+0305
 
 
  
    
      
        
          
            P 
           
         
       
     
    {\ displaystyle {\ mathcal {P}}} 
   
  
 
  
    
      
        
          
            P 
           
         
        ( 
        A. 
        ) 
       
     
    {\ displaystyle {\ mathcal {P}} (A)} 
   
  
 
Power set of set 
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
  
 
Power set 
 
\mathcal{P}
 
 
U+1D4AB
 
 
  
    
      
        
          
            P 
           
         
       
     
    {\ displaystyle {\ mathfrak {P}}} 
   
  
 
  
    
      
        
          
            P 
           
         
        ( 
        A. 
        ) 
       
     
    {\ displaystyle {\ mathfrak {P}} (A)} 
   
  
 
\mathfrak{P}
 
 
U+1D513
 
 
 
Quantity relations  
symbol
 
use
 
interpretation
 
items
 
Latex
 
HTML
 
Unicode
 
 
  
    
      
        ⊂ 
       
     
    {\ displaystyle \ subset} 
   
  
 
  
    
      
        A. 
        ⊂ 
        B. 
       
     
    {\ displaystyle A \ subset B} 
   
  
 
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
   is a real subset of 
  
    
      
        B. 
       
     
    {\ displaystyle B} 
   
  
 
Subset 
 
\subset
 
⊂
 
U+2282
 
 
  
    
      
        ⊊ 
       
     
    {\ displaystyle \ subsetneq} 
   
  
 
  
    
      
        A. 
        ⊊ 
        B. 
       
     
    {\ displaystyle A \ subsetneq B} 
   
  
 
\subsetneq
 
 
U+228A
 
 
  
    
      
        ⊆ 
       
     
    {\ displaystyle \ subseteq} 
   
  
 
  
    
      
        A. 
        ⊆ 
        B. 
       
     
    {\ displaystyle A \ subseteq B} 
   
  
 
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
   is a subset of 
  
    
      
        B. 
       
     
    {\ displaystyle B} 
   
  
 
\subseteq
 
⊆
 
U+2286
 
 
  
    
      
        ⊃ 
       
     
    {\ displaystyle \ supset} 
   
  
 
  
    
      
        A. 
        ⊃ 
        B. 
       
     
    {\ displaystyle A \ supset B} 
   
  
 
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
   is proper superset of 
  
    
      
        B. 
       
     
    {\ displaystyle B} 
   
  
 
Superset 
 
\supset
 
⊃
 
U+2283
 
 
  
    
      
        ⊋ 
       
     
    {\ displaystyle \ supsetneq} 
   
  
 
  
    
      
        A. 
        ⊋ 
        B. 
       
     
    {\ displaystyle A \ supsetneq B} 
   
  
 
\supsetneq
 
 
U+228B
 
 
  
    
      
        ⊇ 
       
     
    {\ displaystyle \ supseteq} 
   
  
 
  
    
      
        A. 
        ⊇ 
        B. 
       
     
    {\ displaystyle A \ supseteq B} 
   
  
 
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
   is a superset of 
  
    
      
        B. 
       
     
    {\ displaystyle B} 
   
  
 
\supseteq
 
⊇
 
U+2287
 
 
  
    
      
        ∈ 
       
     
    {\ displaystyle \ in} 
   
  
 
  
    
      
        a 
        ∈ 
        A. 
       
     
    {\ displaystyle a \ in A} 
   
  
 
the element is in the set contain
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
 
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
  
Element (math) 
 
\in
 
∈
 
U+2208
 
 
  
    
      
        ∋ 
       
     
    {\ displaystyle \ ni} 
   
  
 
  
    
      
        A. 
        ∋ 
        a 
       
     
    {\ displaystyle A \ ni a} 
   
  
 
\ni, \owns
 
∋
 
U+220B
 
 
  
    
      
        ∉ 
       
     
    {\ displaystyle \ notin} 
   
  
 
  
    
      
        a 
        ∉ 
        A. 
       
     
    {\ displaystyle a \ notin A} 
   
  
 
the element is not in the set contain
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
 
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
  
\notin
 
∉
 
U+2209
 
 
  
    
      
        ∌ 
       
     
    {\ displaystyle \ not \ ni} 
   
  
 
  
    
      
        A. 
        ∌ 
        a 
       
     
    {\ displaystyle A \ not \ ni a} 
   
  
 
\not\ni
 
 
U+220C
 
 
 
Note  : The symbols and are not used uniformly and often do not exclude the equality of the two sets.
  
    
      
        ⊂ 
       
     
    {\ displaystyle \ subset} 
   
 
  
    
      
        ⊃ 
       
     
    {\ displaystyle \ supset} 
   
 
Sets of numbers  
symbol
 
use
 
interpretation
 
items
 
Latex
 
HTML
 
Unicode
 
 
  
    
      
        
          P 
         
       
     
    {\ displaystyle \ mathbb {P}} 
   
  
 
 
Prime numbers
 
Prime number 
 
\mathbb{P}
 
ℙ
 
U+2119
 
 
  
    
      
        
          N 
         
       
     
    {\ displaystyle \ mathbb {N}} 
   
  
 
 
natural numbers
 
Natural number 
 
\mathbb{N}
 
ℕ
 
U+2115
 
 
  
    
      
        
          Z 
         
       
     
    {\ displaystyle \ mathbb {Z}} 
   
  
 
 
whole numbers
 
Integer 
 
\mathbb{Z}
 
ℤ
 
U+2124
 
 
  
    
      
        
          
            F. 
           
          
            
              p 
              
                n 
               
             
           
         
       
     
    {\ displaystyle \ mathbb {F} _ {p ^ {n}}} 
   
  
 
 
finite field with prime number characteristic 
  
    
      
        p 
       
     
    {\ displaystyle p} 
   
  
 
Finite body 
 
\mathbb{F}
 
𝔽
 
U+1D53D
 
 
  
    
      
        
          Q 
         
       
     
    {\ displaystyle \ mathbb {Q}} 
   
  
 
 
rational numbers
 
Rational number 
 
\mathbb{Q}
 
ℚ
 
U+211A
 
 
  
    
      
        
          I. 
         
       
     
    {\ displaystyle \ mathbb {I}} 
   
  
 
 
irrational numbers
 
(Real) irrational number 
 
\mathbb{I}
 
𝕀
 
U+1D540
 
 
  
    
      
        
          A. 
         
       
     
    {\ displaystyle \ mathbb {A}} 
   
  
 
 
algebraic numbers
 
(Complex) algebraic number 
 
\mathbb{A}
 
𝔸
 
U+1D538
 
 
  
    
      
        
          T 
         
       
     
    {\ displaystyle \ mathbb {T}} 
   
  
 
 
transcendent numbers
 
Real transcendent number 
 
\mathbb{T}
 
𝕋
 
U+1D54B
 
 
  
    
      
        
          R. 
         
       
     
    {\ displaystyle \ mathbb {R}} 
   
  
 
 
real numbers
 
Real number 
 
\mathbb{R}
 
ℝ
 
U+211D
 
 
  
    
      
        
          
           
          
            ∗ 
           
         
        
          R. 
         
       
     
    {\ displaystyle {} ^ {*} \ mathbb {R}} 
   
  
 
 
hyperreal numbers
 
Hyper real number 
 
{}^*\mathbb{R}
 
* ℝ
 
U+211D
 
 
  
    
      
        
          C. 
         
       
     
    {\ displaystyle \ mathbb {C}} 
   
  
 
 
complex numbers
 
Complex number 
 
\mathbb{C}
 
ℂ
 
U+2102
 
 
  
    
      
        
          H 
         
       
     
    {\ displaystyle \ mathbb {H}} 
   
  
 
 
Quaternions
 
Quaternion 
 
\mathbb{H}
 
ℍ
 
U+210D
 
 
  
    
      
        
          O 
         
       
     
    {\ displaystyle \ mathbb {O}} 
   
  
 
 
Octonions
 
Octonion 
 
\mathbb{O}
 
 
U+1D546
 
 
  
    
      
        
          S. 
         
       
     
    {\ displaystyle \ mathbb {S}} 
   
  
 
 
Sedenions
 
Sedenion 
 
\mathbb{S}
 
 
U+1D54A
 
 
  
    
      
        
          K 
         
       
     
    {\ displaystyle \ mathbb {K}} 
   
  
 
Functional  analysis
 
  
    
      
        
          K 
         
        ∈ 
        { 
        
          R. 
         
        , 
        
          C. 
         
        } 
       
     
    {\ displaystyle \ mathbb {K} \ in \ {\ mathbb {R}, \ mathbb {C} \}} 
   
  
 
Algebras 
 
\mathbb{K}
 
𝕂
 
U+1D542
 
 
 
Powers 
 
symbol
 
use
 
interpretation
 
items
 
Latex
 
HTML
 
Unicode
 
 
  
    
      
        
          | 
         
          
          
        
          | 
         
       
     
    {\ displaystyle | ~~ |} 
   
  
 
  
    
      
        
          | 
         
        A. 
        
          | 
         
       
     
    {\ displaystyle | A |} 
   
  
 
Cardinality of a set 
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
  
 
Power (mathematics) 
 
\vert
 
 
U+007C
 
 
  
    
      
        # 
       
     
    {\ displaystyle \ #} 
   
  
 
  
    
      
        # 
        A. 
       
     
    {\ displaystyle \ #A} 
   
  
 
\#
 
 
U+0023
 
 
  
    
      
        
          
            c 
           
         
       
     
    {\ displaystyle {\ mathfrak {c}}} 
   
  
 
 
Thickness of the continuum
 
Continuum (mathematics) 
 
\mathfrak{c}
 
 
U+1D520
 
 
  
    
      
        ℵ 
       
     
    {\ displaystyle \ aleph} 
   
  
 
  
    
      
        
          ℵ 
          
            0 
           
         
       
     
    {\ displaystyle \ aleph _ {0}} 
   
  , , ...
  
    
      
        
          ℵ 
          
            1 
           
         
       
     
    {\ displaystyle \ aleph _ {1}} 
   
  
Cardinal numbers
 
Cardinal number (math) 
 
\aleph
 
 
U+2135
 
 
  
    
      
        ℶ 
       
     
    {\ displaystyle \ beth} 
   
  
 
  
    
      
        
          ℶ 
          
            0 
           
         
       
     
    {\ displaystyle \ beth _ {0}} 
   
  , , ...
  
    
      
        
          ℶ 
          
            1 
           
         
       
     
    {\ displaystyle \ beth _ {1}} 
   
  
Beth numbers
 
Beth function 
 
\beth
 
 
U+2136
 
 
 
arithmetic  
Arithmetic symbol  
symbol
 
use
 
interpretation
 
items
 
Latex
 
HTML
 
Unicode
 
 
  
    
      
        + 
       
     
    {\ displaystyle +} 
   
  
 
  
    
      
        a 
        + 
        b 
       
     
    {\ displaystyle a + b} 
   
  
 
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
  and are added
  
    
      
        b 
       
     
    {\ displaystyle b} 
   
  
addition 
 
+
 
 
U+002B
 
 
  
    
      
        - 
       
     
    {\ displaystyle -} 
   
  
 
  
    
      
        a 
        - 
        b 
       
     
    {\ displaystyle from} 
   
  
 
  
    
      
        b 
       
     
    {\ displaystyle b} 
   
  is subtracted from
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
  
subtraction 
 
-
 
−
 
U+2212
 
 
⁒ 
 
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
   ⁒  
  
    
      
        b 
       
     
    {\ displaystyle b} 
   
  
 
 
 
U+2052
 
 
  
    
      
        ⋅ 
       
     
    {\ displaystyle \ cdot} 
   
  
 
  
    
      
        a 
        ⋅ 
        b 
       
     
    {\ displaystyle a \ cdot b} 
   
  
 
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
  and are multiplied
  
    
      
        b 
       
     
    {\ displaystyle b} 
   
  
multiplication 
 
\cdot
 
·
 
U+22C5
 
 
  
    
      
        × 
       
     
    {\ displaystyle \ times} 
   
  
 
  
    
      
        a 
        × 
        b 
       
     
    {\ displaystyle a \ times b} 
   
  
 
\times
 
×
 
U+2A2F
 
 
  
    
      
        : 
       
     
    {\ displaystyle:} 
   
  
 
  
    
      
        a 
        : 
        b 
       
     
    {\ displaystyle a: b} 
   
  
 
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
  is divided by
  
    
      
        b 
       
     
    {\ displaystyle b} 
   
  
Division (math) 
 
:
 
 
U+003A
 
 
  
    
      
        
          / 
         
       
     
    {\ displaystyle /} 
   
  
 
  
    
      
        a 
        
          / 
         
        b 
       
     
    {\ displaystyle a / b} 
   
  
 
/
 
⁄
 
U+2215
 
 
  
    
      
        ÷ 
       
     
    {\ displaystyle \ div} 
   
  
 
  
    
      
        a 
        ÷ 
        b 
       
     
    {\ displaystyle a \ div b} 
   
  
 
\div
 
÷
 
U+00F7
 
 
  
    
      
        
          
            
                
                
             
            
                
                
             
           
         
       
     
    {\ displaystyle {\ frac {~~} {~~}}} 
   
  
 
  
    
      
        
          
            
              a 
              b 
             
           
         
       
     
    {\ displaystyle {\ tfrac {a} {b}}} 
   
  
 
\frac
 
 
U+2044
 
 
  
    
      
        - 
       
     
    {\ displaystyle -} 
   
  
 
  
    
      
        - 
        a 
       
     
    {\ displaystyle -a} 
   
  
 
negative number or additive inverse of
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
 
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
  
 
Unary minus 
 
-
 
−
 
U+2212
 
 
  
    
      
        ± 
       
     
    {\ displaystyle \ pm} 
   
  
 
  
    
      
        ± 
        a 
       
     
    {\ displaystyle \ pm a} 
   
  
 
plus or minus 
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
  
 
Plus minus sign 
 
\pm
 
±
 
U+00B1
 
 
  
    
      
        ∓ 
       
     
    {\ displaystyle \ mp} 
   
  
 
  
    
      
        ∓ 
        a 
       
     
    {\ displaystyle \ mp a} 
   
  
 
minus or plus 
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
  
 
\mp
 
 
U+2213
 
 
  
    
      
        ( 
          
        ) 
       
     
    {\ displaystyle (~)} 
   
  
 
  
    
      
        ( 
        a 
        ) 
       
     
    {\ displaystyle (a)} 
   
  
 
the term is evaluated first
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
  
Bracket (character) 
 
( )
 
 
U+0028/9
 
 
  
    
      
        [ 
          
        ] 
       
     
    {\ displaystyle [~]} 
   
  
 
  
    
      
        [ 
        a 
        ] 
       
     
    {\ displaystyle [a]} 
   
  
 
[  ]
 
 
U+005B/D
 
 
 
Equal sign  
symbol
 
use
 
interpretation
 
items
 
Latex
 
HTML
 
Unicode
 
 
  
    
      
        = 
       
     
    {\ displaystyle =} 
   
  
 
  
    
      
        a 
        = 
        b 
       
     
    {\ displaystyle a = b} 
   
  
 
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
   is equal to 
  
    
      
        b 
       
     
    {\ displaystyle b} 
   
  
 
equation 
 
=
 
 
U+003D
 
 
  
    
      
        ≠ 
       
     
    {\ displaystyle \ neq} 
   
  
 
  
    
      
        a 
        ≠ 
        b 
       
     
    {\ displaystyle a \ neq b} 
   
  
 
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
   is not the same 
  
    
      
        b 
       
     
    {\ displaystyle b} 
   
  
 
Inequality 
 
\neq
 
≠
 
U+2260
 
 
  
    
      
        ≡ 
       
     
    {\ displaystyle \ equiv} 
   
  
 
  
    
      
        a 
        ≡ 
        b 
       
     
    {\ displaystyle a \ equiv b} 
   
  
 
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
   is identical to 
  
    
      
        b 
       
     
    {\ displaystyle b} 
   
  
 
Identity equation 
 
\equiv
 
≡
 
U+2261
 
 
  
    
      
        ≈ 
       
     
    {\ displaystyle \ approx} 
   
  
 
  
    
      
        a 
        ≈ 
        b 
       
     
    {\ displaystyle a \ approx b} 
   
  
 
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
   is about the same 
  
    
      
        b 
       
     
    {\ displaystyle b} 
   
  
 
Rounding 
 
\approx
 
≈
 
U+2248
 
 
  
    
      
        ∼ 
       
     
    {\ displaystyle \ sim} 
   
  
 
  
    
      
        a 
        ∼ 
        b 
       
     
    {\ displaystyle a \ sim b} 
   
  
 
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
   is proportional to 
  
    
      
        b 
       
     
    {\ displaystyle b} 
   
  
 
Proportionality 
 
\sim
 
∼
 
U+223C
 
 
  
    
      
        ∝ 
       
     
    {\ displaystyle \ propto} 
   
  
 
  
    
      
        a 
        ∝ 
        b 
       
     
    {\ displaystyle a \ propto b} 
   
  
 
\propto
 
∝
 
U+221D
 
 
  
    
      
        
          
            
              = 
              ^ 
             
           
         
       
     
    {\ displaystyle {\ widehat {=}}} 
   
  
 
  
    
      
        a 
         
        
          
            
              = 
              ^ 
             
           
         
         
        b 
       
     
    {\ displaystyle a \, {\ widehat {=}} \, b} 
   
  
 
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
   corresponds 
  
    
      
        b 
       
     
    {\ displaystyle b} 
   
  
 
Matches sign 
 
\widehat{=}
 
 
U+2259
 
 
  
    
      
        ∼ 
       
     
    {\ displaystyle \ sim} 
   
  
 
  
    
      
        a 
        ∼ 
        b 
       
     
    {\ displaystyle a \ sim b} 
   
  
 
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
   is just as appreciated as 
  
    
      
        b 
       
     
    {\ displaystyle b} 
   
  
 
Preference relation 
 
\sim 
 
 
-
 
 
 
Comparison sign  
symbol
 
use
 
interpretation
 
items
 
Latex
 
HTML
 
Unicode
 
 
  
    
      
        < 
       
     
    {\ displaystyle <} 
   
  
 
  
    
      
        a 
        < 
        b 
       
     
    {\ displaystyle a <b} 
   
  
 
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
   is smaller than 
  
    
      
        b 
       
     
    {\ displaystyle b} 
   
  
 
Comparison (numbers) 
 
<
 
<
 
U+003C
 
 
  
    
      
        > 
       
     
    {\ displaystyle>} 
   
  
 
  
    
      
        a 
        > 
        b 
       
     
    {\ displaystyle a> b} 
   
  
 
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
   is bigger than 
  
    
      
        b 
       
     
    {\ displaystyle b} 
   
  
 
>
 
>
 
U+003E
 
 
  
    
      
        ≤ 
       
     
    {\ displaystyle \ leq} 
   
  
 
  
    
      
        a 
        ≤ 
        b 
       
     
    {\ displaystyle a \ leq b} 
   
  
 
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
  is less than or equal to
  
    
      
        b 
       
     
    {\ displaystyle b} 
   
 
  
    
      
        b 
       
     
    {\ displaystyle b} 
   
  
 
\le, \leq
 
≤
 
U+2264
 
 
  
    
      
        ≦ 
       
     
    {\ displaystyle \ leqq} 
   
  
 
  
    
      
        a 
        ≦ 
        b 
       
     
    {\ displaystyle a \ leqq b} 
   
  
 
\leqq
 
 
U+2266
 
 
  
    
      
        ≥ 
       
     
    {\ displaystyle \ geq} 
   
  
 
  
    
      
        a 
        ≥ 
        b 
       
     
    {\ displaystyle a \ geq b} 
   
  
 
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
  is greater than or equal to
  
    
      
        b 
       
     
    {\ displaystyle b} 
   
 
  
    
      
        b 
       
     
    {\ displaystyle b} 
   
  
 
\ge, \geq
 
≥
 
U+2265
 
 
  
    
      
        ≧ 
       
     
    {\ displaystyle \ geqq} 
   
  
 
  
    
      
        a 
        ≧ 
        b 
       
     
    {\ displaystyle a \ geqq b} 
   
  
 
\geqq
 
 
U+2267
 
 
  
    
      
        ≪ 
       
     
    {\ displaystyle \ ll} 
   
  
 
  
    
      
        a 
        ≪ 
        b 
       
     
    {\ displaystyle a \ ll b} 
   
  
 
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
   is much smaller than 
  
    
      
        b 
       
     
    {\ displaystyle b} 
   
  
 
\ll
 
 
U+226A
 
 
  
    
      
        ≫ 
       
     
    {\ displaystyle \ gg} 
   
  
 
  
    
      
        a 
        ≫ 
        b 
       
     
    {\ displaystyle a \ gg b} 
   
  
 
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
   is much bigger than 
  
    
      
        b 
       
     
    {\ displaystyle b} 
   
  
 
\gg
 
 
U+226B
 
 
  
    
      
        ⋘ 
       
     
    {\ displaystyle \ lll} 
   
  
 
  
    
      
        a 
        ⋘ 
        b 
       
     
    {\ displaystyle a \ lll b} 
   
  
 
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
   is much smaller than 
  
    
      
        b 
       
     
    {\ displaystyle b} 
   
  
 
\lll
 
 
U+22D8
 
 
  
    
      
        ⋙ 
       
     
    {\ displaystyle \ ggg} 
   
  
 
  
    
      
        a 
        ⋙ 
        b 
       
     
    {\ displaystyle a \ ggg b} 
   
  
 
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
   is much larger than 
  
    
      
        b 
       
     
    {\ displaystyle b} 
   
  
 
\ggg
 
 
U+22D9
 
 
  
    
      
        ≶ 
       
     
    {\ displaystyle \ lessgtr} 
   
  
 
  
    
      
        a 
        ≶ 
        b 
       
     
    {\ displaystyle a \ lessgtr b} 
   
  
 
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
   is less than or greater than 
  
    
      
        b 
       
     
    {\ displaystyle b} 
   
  
 
\lessgtr
 
 
U+2276
 
 
  
    
      
        ≷ 
       
     
    {\ displaystyle \ gtrless} 
   
  
 
  
    
      
        a 
        ≷ 
        b 
       
     
    {\ displaystyle a \ gtrless b} 
   
  
 
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
   is greater or less than 
  
    
      
        b 
       
     
    {\ displaystyle b} 
   
  
 
\gtrless
 
 
U+2277
 
 
  
    
      
        ≺ 
       
     
    {\ displaystyle \ prec} 
   
  
 
  
    
      
        a 
        ≺ 
        b 
       
     
    {\ displaystyle a \ prec b} 
   
  
 
  
    
      
        b 
       
     
    {\ displaystyle b} 
   
  is strictly preferred to
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
  
Preference relation 
 
\prec
 
 
U+227A
 
 
  
    
      
        ≻ 
       
     
    {\ displaystyle \ succ} 
   
  
 
  
    
      
        a 
        ≻ 
        b 
       
     
    {\ displaystyle a \ succ b} 
   
  
 
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
  is strictly preferred to
  
    
      
        b 
       
     
    {\ displaystyle b} 
   
  
\succ
 
 
U+227B
 
 
  
    
      
        ≼ 
       
     
    {\ displaystyle \ preccurlyeq} 
   
  
 
  
    
      
        a 
        ≼ 
        b 
       
     
    {\ displaystyle a \ preccurlyeq b} 
   
  
 
  
    
      
        b 
       
     
    {\ displaystyle b} 
   
  is preferred weakly or is at least as good as
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
 
  
    
      
        b 
       
     
    {\ displaystyle b} 
   
 
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
  
 
\preccurlyeq
 
 
U+227C
 
 
  
    
      
        ≽ 
       
     
    {\ displaystyle \ succcurlyeq} 
   
  
 
  
    
      
        a 
        ≽ 
        b 
       
     
    {\ displaystyle a \ succcurlyeq b} 
   
  
 
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
  is preferred weakly or is at least as good as
  
    
      
        b 
       
     
    {\ displaystyle b} 
   
 
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
 
  
    
      
        b 
       
     
    {\ displaystyle b} 
   
  
 
\succcurlyeq
 
 
U+227D
 
 
 
Divisibility  
symbol
 
use
 
interpretation
 
items
 
Latex
 
HTML
 
Unicode
 
 
  
    
      
        ∣ 
       
     
    {\ displaystyle \ mid} 
   
  
 
  
    
      
        a 
        ∣ 
        b 
       
     
    {\ displaystyle a \ mid b} 
   
  
 
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
   Splits 
  
    
      
        b 
       
     
    {\ displaystyle b} 
   
  
 
Divisibility 
 
\mid
 
 
U+2223
 
 
  
    
      
        ∥ 
       
     
    {\ displaystyle \ parallel} 
   
  
 
  
    
      
        a 
        ∥ 
        b 
       
     
    {\ displaystyle a \ parallel b} 
   
  
 
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
  divides exactly
  
    
      
        b 
       
     
    {\ displaystyle b} 
   
  
\parallel
 
 
U+2225
 
 
  
    
      
        ∤ 
       
     
    {\ displaystyle \ nmid} 
   
  
 
  
    
      
        a 
        ∤ 
        b 
       
     
    {\ displaystyle a \ nmid b} 
   
  
 
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
  does not
 share
  
    
      
        b 
       
     
    {\ displaystyle b} 
   
  
\nmid
 
 
U+2224
 
 
  
    
      
        ⊥ 
       
     
    {\ displaystyle \ perp} 
   
  
 
  
    
      
        a 
        ⊥ 
        b 
       
     
    {\ displaystyle a \ perp b} 
   
  
 
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
  and are coprime
  
    
      
        b 
       
     
    {\ displaystyle b} 
   
  
Coprime 
 
\perp
 
⊥
 
U+22A5
 
 
  
    
      
        ⊓ 
       
     
    {\ displaystyle \ sqcap} 
   
  
 
  
    
      
        a 
        ⊓ 
        b 
       
     
    {\ displaystyle a \ sqcap b} 
   
  
 
greatest common factor of and
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
 
  
    
      
        b 
       
     
    {\ displaystyle b} 
   
  
 
Greatest common divisor 
 
\sqcap
 
 
U+2293
 
 
  
    
      
        ∧ 
       
     
    {\ displaystyle \ wedge} 
   
  
 
  
    
      
        a 
        ∧ 
        b 
       
     
    {\ displaystyle a \ wedge b} 
   
  
 
\wedge
 
∧
 
U+2227
 
 
  
    
      
        ⊔ 
       
     
    {\ displaystyle \ sqcup} 
   
  
 
  
    
      
        a 
        ⊔ 
        b 
       
     
    {\ displaystyle a \ sqcup b} 
   
  
 
smallest common multiple of and
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
 
  
    
      
        b 
       
     
    {\ displaystyle b} 
   
  
 
Least common multiple 
 
\sqcup
 
 
U+2294
 
 
  
    
      
        ∨ 
       
     
    {\ displaystyle \ vee} 
   
  
 
  
    
      
        a 
        ∨ 
        b 
       
     
    {\ displaystyle a \ vee b} 
   
  
 
\vee
 
∨
 
U+2228
 
 
  
    
      
        ≡ 
       
     
    {\ displaystyle \ equiv} 
   
  
 
  
    
      
        a 
        ≡ 
        b 
        
          mod 
          
            m 
           
         
       
     
    {\ displaystyle a \ equiv b {\ bmod {m}}} 
   
  
 
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
  and are congruent modulo
  
    
      
        b 
       
     
    {\ displaystyle b} 
   
 
  
    
      
        m 
       
     
    {\ displaystyle m} 
   
  
 
Congruence (number theory) 
 
\equiv
 
≡
 
U+2261
 
 
 
Intervals  
symbol
 
use
 
interpretation
 
items
 
Latex
 
HTML
 
Unicode
 
 
  
    
      
        [ 
          
          
        ] 
       
     
    {\ displaystyle [~~]} 
   
  
 
  
    
      
        [ 
        a 
        , 
        b 
        ] 
       
     
    {\ displaystyle [a, b]} 
   
  
 
completed interval between and
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
 
  
    
      
        b 
       
     
    {\ displaystyle b} 
   
  
 
interval 
 
(  )[  ]
 
 
U+0028/9U+005B/D
 
 
  
    
      
        ] 
          
          
        [ 
       
     
    {\ displaystyle] ~~ [} 
   
  
 
  
    
      
        ] 
        a 
        , 
        b 
        [ 
       
     
    {\ displaystyle] a, b [} 
   
  
 
open interval between and
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
 
  
    
      
        b 
       
     
    {\ displaystyle b} 
   
  
 
 
  
    
      
        ( 
          
          
        ) 
       
     
    {\ displaystyle (~~)} 
   
  
 
  
    
      
        ( 
        a 
        , 
        b 
        ) 
       
     
    {\ displaystyle (a, b)} 
   
  
 
 
  
    
      
        [ 
          
          
        [ 
       
     
    {\ displaystyle [~~ [} 
   
  
 
  
    
      
        [ 
        a 
        , 
        b 
        [ 
       
     
    {\ displaystyle [a, b [} 
   
  
 
right half-open interval between and
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
 
  
    
      
        b 
       
     
    {\ displaystyle b} 
   
  
 
 
  
    
      
        [ 
          
          
        ) 
       
     
    {\ displaystyle [~~)} 
   
  
 
  
    
      
        [ 
        a 
        , 
        b 
        ) 
       
     
    {\ displaystyle [a, b)} 
   
  
 
 
  
    
      
        ] 
          
          
        ] 
       
     
    {\ displaystyle] ~~]} 
   
  
 
  
    
      
        ] 
        a 
        , 
        b 
        ] 
       
     
    {\ displaystyle] a, b]} 
   
  
 
left half-open interval between and
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
 
  
    
      
        b 
       
     
    {\ displaystyle b} 
   
  
 
 
  
    
      
        ( 
          
          
        ] 
       
     
    {\ displaystyle (~~]} 
   
  
 
  
    
      
        ( 
        a 
        , 
        b 
        ] 
       
     
    {\ displaystyle (a, b]} 
   
  
 
 
 
Elementary functions  
symbol
 
use
 
interpretation
 
items
 
Latex
 
HTML
 
Unicode
 
 
  
    
      
        
          | 
         
          
          
        
          | 
         
       
     
    {\ displaystyle | ~~ |} 
   
  
 
  
    
      
        
          | 
         
        x 
        
          | 
         
       
     
    {\ displaystyle | x |} 
   
  
 
amount of 
  
    
      
        x 
       
     
    {\ displaystyle x} 
   
  
 
Amount function 
 
\vert
 
 
U+007C
 
 
  
    
      
        
          [ 
          
              
              
           
          ] 
         
       
     
    {\ displaystyle \ left [~~ \ right]} 
   
  
 
  
    
      
        
          [ 
          x 
          ] 
         
       
     
    {\ displaystyle \ left [x \ right]} 
   
  
 
largest integer less than or equal to 
  
    
      
        x 
       
     
    {\ displaystyle x} 
   
  
 
Gaussian bracket 
 
[  ]
 
 
U+005B/D
 
 
  
    
      
        ⌊ 
          
          
        ⌋ 
       
     
    {\ displaystyle \ lfloor ~~ \ rfloor} 
   
  
 
  
    
      
        ⌊ 
        x 
        ⌋ 
       
     
    {\ displaystyle \ lfloor x \ rfloor} 
   
  
 
\lfloor \rfloor
 
⌊ ⌋
 
U+230A/B
 
 
  
    
      
        ⌈ 
          
          
        ⌉ 
       
     
    {\ displaystyle \ lceil ~~ \ rceil} 
   
  
 
  
    
      
        ⌈ 
        x 
        ⌉ 
       
     
    {\ displaystyle \ lceil x \ rceil} 
   
  
 
smallest whole number greater than or equal to 
  
    
      
        x 
       
     
    {\ displaystyle x} 
   
  
 
\lceil \rceil
 
⌈ ⌉
 
U+2308/9
 
 
  
    
      
        
          
             
           
         
       
     
    {\ displaystyle {\ sqrt {\,}}} 
   
  
 
  
    
      
        
          
            x 
           
         
       
     
    {\ displaystyle {\ sqrt {x}}} 
   
  
 
squareroot of 
  
    
      
        x 
       
     
    {\ displaystyle x} 
   
  
 
Root (math) 
 
\sqrt
 
√
 
U+221A
 
 
  
    
      
        
          
            x 
            
              n 
             
           
         
       
     
    {\ displaystyle {\ sqrt [{n}] {x}}} 
   
  
 
  
    
      
        n 
       
     
    {\ displaystyle n} 
   
  -th root 
  
    
      
        x 
       
     
    {\ displaystyle x} 
   
  
 
 
  
    
      
        % 
       
     
    {\ displaystyle \%} 
   
  
 
  
    
      
        x 
         
        % 
       
     
    {\ displaystyle x \, \%} 
   
  
 
  
    
      
        x 
       
     
    {\ displaystyle x} 
   
   percent
 
percent 
 
\%
 
 
U+0025
 
 
 
Note  : the power function  is not represented by its own symbol, but by superscripting  the exponent  .
Complex numbers  
symbol
 
use
 
interpretation
 
items
 
Latex
 
HTML
 
Unicode
 
 
  
    
      
        ℜ 
       
     
    {\ displaystyle \ Re} 
   
  
 
  
    
      
        ℜ 
        ( 
        z 
        ) 
       
     
    {\ displaystyle \ Re (z)} 
   
  
 
Real part of the complex number 
  
    
      
        z 
       
     
    {\ displaystyle z} 
   
  
 
Complex number 
 
\Re
 
 
U+211C
 
 
  
    
      
        ℑ 
       
     
    {\ displaystyle \ Im} 
   
  
 
  
    
      
        ℑ 
        ( 
        z 
        ) 
       
     
    {\ displaystyle \ Im (z)} 
   
  
 
Imaginary part of the complex number 
  
    
      
        z 
       
     
    {\ displaystyle z} 
   
  
 
\Im
 
 
U+2111
 
 
  
    
      
        
          
            
                
              ¯ 
             
           
         
       
     
    {\ displaystyle {\ bar {~}}} 
   
  
 
  
    
      
        
          
            
              z 
              ¯ 
             
           
         
       
     
    {\ displaystyle {\ bar {z}}} 
   
  
 
Conjugates complex number of number 
  
    
      
        z 
       
     
    {\ displaystyle z} 
   
  
 
Conjugation (math) 
 
\bar
 
 
U+0305
 
 
  
    
      
        
          
           
          
            ∗ 
           
         
       
     
    {\ displaystyle {} ^ {\ ast}} 
   
  
 
  
    
      
        
          z 
          
            ∗ 
           
         
       
     
    {\ displaystyle z ^ {\ ast}} 
   
  
 
\ast
 
∗
 
U+002A
 
 
  
    
      
        
          | 
         
          
          
        
          | 
         
       
     
    {\ displaystyle | ~~ |} 
   
  
 
  
    
      
        
          | 
         
        z 
        
          | 
         
       
     
    {\ displaystyle | z |} 
   
  
 
Complex number amount 
  
    
      
        z 
       
     
    {\ displaystyle z} 
   
  
 
Amount function 
 
\vert
 
 
U+007C
 
 
 
Note:  for the designation of the real and imaginary part of a complex number, the abbreviations and are the most common.
  
    
      
        re 
       
     
    {\ displaystyle \ operatorname {Re}} 
   
 
  
    
      
        in the 
       
     
    {\ displaystyle \ operatorname {Im}} 
   
 
Mathematical constants  
symbol
 
use
 
interpretation
 
items
 
Latex
 
HTML
 
Unicode
 
 
  
    
      
        π 
       
     
    {\ displaystyle \ pi} 
   
  
 
 
Circle number
 
Circle number 
 
\pi
 
π
 
U+03C0
 
 
  
    
      
        
          e 
         
       
     
    {\ displaystyle \ mathrm {e}} 
   
  
 
 
Euler's number
 
Euler's number 
 
\mathrm{e}
 
 
U+0065
 
 
  
    
      
        Φ 
       
     
    {\ displaystyle \ Phi} 
   
  
 
 
Golden cut
 
Golden cut 
 
\Phi
 
Φ
 
U+03A6
 
 
  
    
      
        
          i 
         
       
     
    {\ displaystyle \ mathrm {i}} 
   
  
 
 
imaginary unit
 
Imaginary number 
 
\mathrm{i}
 
 
U+0069
 
 
 
See also:   mathematical constant  for symbols of other mathematical constants.
Analysis  
Sequences and ranks  
symbol
 
use
 
interpretation
 
items
 
Latex
 
HTML
 
Unicode
 
 
  
    
      
        ∑ 
       
     
    {\ displaystyle \ sum} 
   
  
 
  
    
      
        
          ∑ 
          
            i 
            = 
            1 
           
          
            n 
           
         
        , 
        
          ∑ 
          
            i 
            ∈ 
            I. 
           
         
       
     
    {\ displaystyle \ sum _ {i = 1} ^ {n}, \ sum _ {i \ in I}} 
   
  
 
Sum of to or over all in the set
  
    
      
        i 
        = 
        1 
       
     
    {\ displaystyle i = 1} 
   
 
  
    
      
        n 
       
     
    {\ displaystyle n} 
   
 
  
    
      
        i 
       
     
    {\ displaystyle i} 
   
 
  
    
      
        I. 
       
     
    {\ displaystyle I} 
   
  
 
total 
 
\sum
 
∑
 
U+2211
 
 
  
    
      
        ∏ 
       
     
    {\ displaystyle \ prod} 
   
  
 
  
    
      
        
          ∏ 
          
            i 
            = 
            1 
           
          
            n 
           
         
        , 
        
          ∏ 
          
            i 
            ∈ 
            I. 
           
         
       
     
    {\ displaystyle \ prod _ {i = 1} ^ {n}, \ prod _ {i \ in I}} 
   
  
 
Product of up to or over all in the amount
  
    
      
        i 
        = 
        1 
       
     
    {\ displaystyle i = 1} 
   
 
  
    
      
        n 
       
     
    {\ displaystyle n} 
   
 
  
    
      
        i 
       
     
    {\ displaystyle i} 
   
 
  
    
      
        I. 
       
     
    {\ displaystyle I} 
   
  
 
Product (math) 
 
\prod
 
∏
 
U+220F
 
 
  
    
      
        ∐ 
       
     
    {\ displaystyle \ coprod} 
   
  
 
  
    
      
        
          ∐ 
          
            i 
            = 
            1 
           
          
            n 
           
         
        , 
        
          ∐ 
          
            i 
            ∈ 
            I. 
           
         
       
     
    {\ displaystyle \ coprod _ {i = 1} ^ {n}, \ coprod _ {i \ in I}} 
   
  
 
Coproduct of up to or over all in the set
  
    
      
        i 
        = 
        1 
       
     
    {\ displaystyle i = 1} 
   
 
  
    
      
        n 
       
     
    {\ displaystyle n} 
   
 
  
    
      
        i 
       
     
    {\ displaystyle i} 
   
 
  
    
      
        I. 
       
     
    {\ displaystyle I} 
   
  
 
Coproduct 
 
\coprod
 
 
U+2210
 
 
  
    
      
        ( 
          
          
        ) 
       
     
    {\ displaystyle (~~)} 
   
  
 
  
    
      
        ( 
        
          a 
          
            n 
           
         
        
          ) 
          
            n 
           
         
       
     
    {\ displaystyle (a_ {n}) _ {n}} 
   
  
 
Follow with the sequence members 
  
    
      
        
          a 
          
            1 
           
         
        , 
        
          a 
          
            2 
           
         
        , 
        ... 
       
     
    {\ displaystyle a_ {1}, a_ {2}, \ ldots} 
   
  
 
Episode (math) 
 
(  )
 
 
U+0028/9
 
 
  
    
      
        → 
       
     
    {\ displaystyle \ to} 
   
  
 
  
    
      
        
          a 
          
            n 
           
         
        → 
        a 
       
     
    {\ displaystyle a_ {n} \ to a} 
   
  
 
the sequence converges towards the limit value
  
    
      
        ( 
        
          a 
          
            n 
           
         
        ) 
       
     
    {\ displaystyle (a_ {n})} 
   
 
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
  
 
Limit value (sequence) 
 
\to
 
→
 
U+2192
 
 
  
    
      
        ∞ 
       
     
    {\ displaystyle \ infty} 
   
  
 
  
    
      
        n 
        → 
        ∞ 
       
     
    {\ displaystyle n \ to \ infty} 
   
  
 
  
    
      
        n 
       
     
    {\ displaystyle n} 
   
   strives for infinity
 
infinity 
 
\infty
 
∞
 
U+221E
 
 
 
Functions  
symbol
 
use
 
interpretation
 
items
 
Latex
 
HTML
 
Unicode
 
 
  
    
      
        → 
       
     
    {\ displaystyle \ to} 
   
  
 
  
    
      
        f 
        : 
        A. 
        → 
        B. 
       
     
    {\ displaystyle f \ colon A \ to B} 
   
  
 
the function is the amount in the amount from
  
    
      
        f 
       
     
    {\ displaystyle f} 
   
 
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        B. 
       
     
    {\ displaystyle B} 
   
  
Function (math) 
 
\to
 
→
 
U+2192
 
 
  
    
      
        A. 
         
        
          
            
              
                → 
               
              
                f 
               
             
           
         
         
        B. 
       
     
    {\ displaystyle A \, {\ stackrel {f} {\ to}} \, B} 
   
  
 
 
  
    
      
        ↦ 
       
     
    {\ displaystyle \ mapsto} 
   
  
 
  
    
      
        f 
        : 
        x 
        ↦ 
        y 
       
     
    {\ displaystyle f \ colon x \ mapsto y} 
   
  
 
the function of forming the element to the element from
  
    
      
        f 
       
     
    {\ displaystyle f} 
   
 
  
    
      
        x 
       
     
    {\ displaystyle x} 
   
 
  
    
      
        y 
       
     
    {\ displaystyle y} 
   
  
\mapsto
 
↦
 
U+21A6
 
 
  
    
      
        x 
         
        
          
            
              
                ↦ 
               
              
                f 
               
             
           
         
         
        y 
       
     
    {\ displaystyle x \, {\ stackrel {f} {\ mapsto}} \, y} 
   
  
 
 
  
    
      
        ( 
          
          
        ) 
       
     
    {\ displaystyle (~~)} 
   
  
 
  
    
      
        f 
        ( 
        x 
        ) 
       
     
    {\ displaystyle f (x)} 
   
  
 
Function value of for the element
  
    
      
        f 
       
     
    {\ displaystyle f} 
   
 
  
    
      
        x 
       
     
    {\ displaystyle x} 
   
  
 
Image (math) 
 
(  )
 
 
U+0028/9
 
 
  
    
      
        f 
        ( 
        X 
        ) 
       
     
    {\ displaystyle f (X)} 
   
  
 
Image of the crowd under the function
  
    
      
        X 
       
     
    {\ displaystyle X} 
   
 
  
    
      
        f 
       
     
    {\ displaystyle f} 
   
  
 
 
  
    
      
        [ 
          
          
        ] 
       
     
    {\ displaystyle [~~]} 
   
  
 
  
    
      
        f 
        [ 
        X 
        ] 
       
     
    {\ displaystyle f [X]} 
   
  
 
[  ]
 
 
U+005B/D
 
 
  
    
      
        | 
       
     
    {\ displaystyle \ vert} 
   
  
 
  
    
      
        f 
        
          | 
          
            X 
           
         
       
     
    {\ displaystyle f \ vert _ {X}} 
   
  
 
Restriction of the function to the quantity
  
    
      
        f 
       
     
    {\ displaystyle f} 
   
 
  
    
      
        X 
       
     
    {\ displaystyle X} 
   
  
 
Restriction 
 
\vert
 
 
U+007C
 
 
  
    
      
        ⋅ 
       
     
    {\ displaystyle \ cdot} 
   
  
 
  
    
      
        f 
        ( 
        ⋅ 
        ) 
       
     
    {\ displaystyle f (\ cdot)} 
   
  
 
Placeholder for a variable as an argument of the function 
  
    
      
        f 
       
     
    {\ displaystyle f} 
   
  
 
Variable (math) 
 
\cdot
 
·
 
U+22C5
 
 
  
    
      
        
          
           
          
            - 
            1 
           
         
       
     
    {\ displaystyle {} ^ {- 1}} 
   
  
 
  
    
      
        
          f 
          
            - 
            1 
           
         
       
     
    {\ displaystyle f ^ {- 1}} 
   
  
 
Inverse function to 
  
    
      
        f 
       
     
    {\ displaystyle f} 
   
  
 
Inverse function 
 
-1
 
 
U+207B
 
 
  
    
      
        
          f 
          
            - 
            1 
           
         
        ( 
        Y 
        ) 
       
     
    {\ displaystyle f ^ {- 1} (Y)} 
   
  
 
Archetype of the crowd under the function
  
    
      
        Y 
       
     
    {\ displaystyle Y} 
   
 
  
    
      
        f 
       
     
    {\ displaystyle f} 
   
  
 
Archetype (mathematics) 
 
 
 
 
 
  
    
      
        ∘ 
       
     
    {\ displaystyle \ circ} 
   
  
 
  
    
      
        f 
        ∘ 
        G 
       
     
    {\ displaystyle f \ circ g} 
   
  
 
Concatenation of functions and
  
    
      
        f 
       
     
    {\ displaystyle f} 
   
 
  
    
      
        G 
       
     
    {\ displaystyle g} 
   
  
 
Composition (mathematics) 
 
\circ
 
 
U+2218
 
 
  
    
      
        ∗ 
       
     
    {\ displaystyle \ ast} 
   
  
 
  
    
      
        f 
        ∗ 
        G 
       
     
    {\ displaystyle f \ ast g} 
   
  
 
Convolution of functions and
  
    
      
        f 
       
     
    {\ displaystyle f} 
   
 
  
    
      
        G 
       
     
    {\ displaystyle g} 
   
  
 
Convolution (math) 
 
\ast
 
∗
 
U+2217
 
 
  
    
      
        
          
            
                
              ^ 
             
           
         
       
     
    {\ displaystyle {\ hat {~}}} 
   
  
 
  
    
      
        
          
            
              f 
              ^ 
             
           
         
       
     
    {\ displaystyle {\ hat {f}}} 
   
  
 
Fourier transform of the function 
  
    
      
        f 
       
     
    {\ displaystyle f} 
   
  
 
Fourier transform 
 
\hat
 
 
U+0302
 
 
 
See also:   Symbolic notations for functions  for other notation variants
Limit values  
symbol
 
use
 
interpretation
 
items
 
Latex
 
HTML
 
Unicode
 
 
  
    
      
        ↑ 
       
     
    {\ displaystyle \ uparrow} 
   
  
 
  
    
      
        
          lim 
          
            x 
            ↑ 
            a 
           
         
        f 
        ( 
        x 
        ) 
       
     
    {\ displaystyle \ lim _ {x \ uparrow a} f (x)} 
   
  
 
left-hand limit of the function for against
  
    
      
        f 
       
     
    {\ displaystyle f} 
   
 
  
    
      
        x 
       
     
    {\ displaystyle x} 
   
 
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
  
 
Limit value (function) 
 
\uparrow
 
↑
 
U+2191
 
 
  
    
      
        ↗ 
       
     
    {\ displaystyle \ nearrow} 
   
  
 
  
    
      
        
          lim 
          
            x 
            ↗ 
            a 
           
         
        f 
        ( 
        x 
        ) 
       
     
    {\ displaystyle \ lim _ {x \ nearrow a} f (x)} 
   
  
 
\nearrow
 
 
U+2197
 
 
  
    
      
        → 
       
     
    {\ displaystyle \ to} 
   
  
 
  
    
      
        
          lim 
          
            x 
            → 
            a 
           
         
        f 
        ( 
        x 
        ) 
       
     
    {\ displaystyle \ lim _ {x \ to a} f (x)} 
   
  
 
bilateral limit value of the function for against
  
    
      
        f 
       
     
    {\ displaystyle f} 
   
 
  
    
      
        x 
       
     
    {\ displaystyle x} 
   
 
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
  
 
\to
 
→
 
U+2192
 
 
  
    
      
        ↘ 
       
     
    {\ displaystyle \ searrow} 
   
  
 
  
    
      
        
          lim 
          
            x 
            ↘ 
            a 
           
         
        f 
        ( 
        x 
        ) 
       
     
    {\ displaystyle \ lim _ {x \ searrow a} f (x)} 
   
  
 
right-hand limit of the function for against
  
    
      
        x 
       
     
    {\ displaystyle x} 
   
 
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
  
 
\searrow
 
 
U+2198
 
 
  
    
      
        ↓ 
       
     
    {\ displaystyle \ downarrow} 
   
  
 
  
    
      
        
          lim 
          
            x 
            ↓ 
            a 
           
         
        f 
        ( 
        x 
        ) 
       
     
    {\ displaystyle \ lim _ {x \ downarrow a} f (x)} 
   
  
 
\downarrow
 
↓
 
U+2193
 
 
  
    
      
        
          X 
          
            n 
           
         
        
          
            → 
            
              p 
             
           
         
        X 
       
     
    {\ displaystyle X_ {n} {\ xrightarrow {p}} X} 
   
  
 
  
    
      
        plim 
         
        ( 
        
          X 
          
            n 
           
         
        ) 
        = 
        X 
       
     
    {\ displaystyle \ operatorname {plim} (X_ {n}) = X} 
   
  
 
Convergence in probability for against
  
    
      
        
          X 
          
            n 
           
         
       
     
    {\ displaystyle X_ {n}} 
   
 
  
    
      
        X 
       
     
    {\ displaystyle X} 
   
  
 
Convergence (stochastics) 
 
\to
 
→
 
U+2192
 
 
  
    
      
        
          X 
          
            n 
           
         
        
          
            → 
            
              d 
             
           
         
        X 
       
     
    {\ displaystyle X_ {n} {\ xrightarrow {d}} X} 
   
  
 
  
    
      
        
          x 
          
            n 
           
         
        
          
            → 
            
              d 
             
           
         
        x 
       
     
    {\ displaystyle x_ {n} {\ xrightarrow {d}} x} 
   
  
 
Convergence in distribution for against
  
    
      
        
          x 
          
            n 
           
         
       
     
    {\ displaystyle x_ {n}} 
   
 
  
    
      
        x 
       
     
    {\ displaystyle x} 
   
  
 
\to
 
→
 
U+2192
 
 
  
    
      
        
          X 
          
            n 
           
         
        
          
            → 
            
              m 
             
           
         
        X 
       
     
    {\ displaystyle X_ {n} {\ xrightarrow {m}} X} 
   
  
 
  
    
      
        
          x 
          
            n 
           
         
        
          
            → 
            
              m 
             
           
         
        x 
       
     
    {\ displaystyle x_ {n} {\ xrightarrow {m}} x} 
   
  
 
Root mean square convergence for against
  
    
      
        
          x 
          
            n 
           
         
       
     
    {\ displaystyle x_ {n}} 
   
 
  
    
      
        x 
       
     
    {\ displaystyle x} 
   
  
 
\to
 
→
 
U+2192
 
 
 
Asymptotic behavior  
symbol
 
use
 
interpretation
 
items
 
Latex
 
HTML
 
Unicode
 
 
  
    
      
        ∼ 
       
     
    {\ displaystyle \ sim} 
   
  
 
  
    
      
        f 
        ∼ 
        G 
       
     
    {\ displaystyle f \ sim g} 
   
  
 
the function is asymptotically equal to the function
  
    
      
        f 
       
     
    {\ displaystyle f} 
   
 
  
    
      
        G 
       
     
    {\ displaystyle g} 
   
  
 
Asymptotic analysis 
 
\sim
 
∼
 
U+223C
 
 
  
    
      
        O 
       
     
    {\ displaystyle o} 
   
  
 
  
    
      
        f 
        ∈ 
        O 
        ( 
        G 
        ) 
       
     
    {\ displaystyle f \ in o (g)} 
   
  
 
the function grows slower than
  
    
      
        f 
       
     
    {\ displaystyle f} 
   
 
  
    
      
        G 
       
     
    {\ displaystyle g} 
   
  
 
Landau symbols 
 
o
 
 
U+006F
 
 
  
    
      
        
          
            O 
           
         
       
     
    {\ displaystyle {\ mathcal {O}}} 
   
  
 
  
    
      
        f 
        ∈ 
        
          
            O 
           
         
        ( 
        G 
        ) 
       
     
    {\ displaystyle f \ in {\ mathcal {O}} (g)} 
   
  
 
the function does not grow much faster than
  
    
      
        f 
       
     
    {\ displaystyle f} 
   
 
  
    
      
        G 
       
     
    {\ displaystyle g} 
   
  
 
\mathcal{O}
 
 
U+1D4AA
 
 
  
    
      
        Θ 
       
     
    {\ displaystyle \ Theta} 
   
  
 
  
    
      
        f 
        ∈ 
        Θ 
        ( 
        G 
        ) 
       
     
    {\ displaystyle f \ in \ Theta (g)} 
   
  
 
the function grows as fast as
  
    
      
        f 
       
     
    {\ displaystyle f} 
   
 
  
    
      
        G 
       
     
    {\ displaystyle g} 
   
  
 
\Theta
 
Θ
 
U+0398
 
 
  
    
      
        Ω 
       
     
    {\ displaystyle \ Omega} 
   
  
 
  
    
      
        f 
        ∈ 
        Ω 
        ( 
        G 
        ) 
       
     
    {\ displaystyle f \ in \ Omega (g)} 
   
  
 
the function does not grow much slower than
  
    
      
        f 
       
     
    {\ displaystyle f} 
   
 
  
    
      
        G 
       
     
    {\ displaystyle g} 
   
  
 
\Omega
 
Ω
 
U+03A9
 
 
  
    
      
        ω 
       
     
    {\ displaystyle \ omega} 
   
  
 
  
    
      
        f 
        ∈ 
        ω 
        ( 
        G 
        ) 
       
     
    {\ displaystyle f \ in \ omega (g)} 
   
  
 
the function grows faster than
  
    
      
        f 
       
     
    {\ displaystyle f} 
   
 
  
    
      
        G 
       
     
    {\ displaystyle g} 
   
  
 
\omega
 
ω
 
U+03C9
 
 
 
Differential calculus  
symbol
 
use
 
interpretation
 
items
 
Latex
 
HTML
 
Unicode
 
 
  
    
      
        
          
           
          ′ 
         
       
     
    {\ displaystyle {} '} 
   
  
 
  
    
      
        
          f 
          ′ 
         
        , 
        
          f 
          ″ 
         
       
     
    {\ displaystyle f ', f' '} 
   
  
 
first or second derivative of the function 
  
    
      
        f 
       
     
    {\ displaystyle f} 
   
  
 
Differential calculus 
 
\prime
 
′
 
U+2032
 
 
  
    
      
        ⋅ 
       
     
    {\ displaystyle \ cdot} 
   
  
 
  
    
      
        
          
            
              f 
              ˙ 
             
           
         
        , 
        
          
            
              f 
              ¨ 
             
           
         
       
     
    {\ displaystyle {\ dot {f}}, {\ ddot {f}}} 
   
  
 
first or second derivative of after time (in physics)
  
    
      
        f 
       
     
    {\ displaystyle f} 
   
  
\dot, \ddot
 
 
U+0307
 
 
  
    
      
        
          
           
          
            ( 
              
            ) 
           
         
       
     
    {\ displaystyle {} ^ {(~)}} 
   
  
 
  
    
      
        
          f 
          
            ( 
            n 
            ) 
           
         
       
     
    {\ displaystyle f ^ {(n)}} 
   
  
 
  
    
      
        n 
       
     
    {\ displaystyle n} 
   
  -th derivative of the function 
  
    
      
        f 
       
     
    {\ displaystyle f} 
   
  
 
(  )
 
 
U+0028/9
 
 
  
    
      
        
          d 
         
       
     
    {\ displaystyle \ mathrm {d}} 
   
  
 
  
    
      
        
          
            
              
                d 
               
              f 
             
            
              
                d 
               
              x 
             
           
         
       
     
    {\ displaystyle {\ frac {\ mathrm {d} f} {\ mathrm {d} x}}} 
   
  
 
Derivation of the function according to
  
    
      
        f 
       
     
    {\ displaystyle f} 
   
 
  
    
      
        x 
       
     
    {\ displaystyle x} 
   
  
 
\mathrm{d}
 
 
U+0064
 
 
  
    
      
        
          d 
         
        f 
       
     
    {\ displaystyle \ mathrm {d} f} 
   
  
 
total differential of function 
  
    
      
        f 
       
     
    {\ displaystyle f} 
   
  
 
Total differential 
 
 
  
    
      
        ∂ 
       
     
    {\ displaystyle \ partial} 
   
  
 
  
    
      
        
          
            
              ∂ 
               
              f 
             
            
              ∂ 
              x 
             
           
         
       
     
    {\ displaystyle {\ frac {\ partial \! f} {\ partial x}}} 
   
  
 
partial derivative of the function to
  
    
      
        f 
       
     
    {\ displaystyle f} 
   
 
  
    
      
        x 
       
     
    {\ displaystyle x} 
   
  
 
Partial derivative 
 
\partial
 
∂
 
U+2202
 
 
 
Integral calculus  
symbol
 
use
 
interpretation
 
items
 
Latex
 
HTML
 
Unicode
 
 
  
    
      
        ∫ 
       
     
    {\ displaystyle \ int} 
   
  
 
  
    
      
        
          ∫ 
          
            a 
           
          
            b 
           
         
       
     
    {\ displaystyle \ int _ {a} ^ {b}} 
   
  , 
  
    
      
        
          
            ∫ 
            
              G 
             
           
         
       
     
    {\ displaystyle \ displaystyle \ int _ {G}} 
   
  
 
definite integral between and or over the area
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
 
  
    
      
        b 
       
     
    {\ displaystyle b} 
   
 
  
    
      
        G 
       
     
    {\ displaystyle G} 
   
  
 
Integral calculus 
 
\int
 
∫
 
U+222B
 
 
  
    
      
        
          
            
              ∮ 
               
             
           
           
         
       
     
    {\ displaystyle \ oint} 
   
  
 
  
    
      
        
          
            
              
                ∮ 
                 
               
             
             
           
          
            γ 
           
         
       
     
    {\ displaystyle \ oint _ {\ gamma}} 
   
  
 
Integral over the curve 
  
    
      
        γ 
       
     
    {\ displaystyle \ gamma} 
   
  
 
Curve integral 
 
\oint
 
 
U+222E
 
 
  
    
      
        ∬ 
       
     
    {\ displaystyle \ iint} 
   
  
 
  
    
      
        
          ∬ 
          
            
              F. 
             
           
         
       
     
    {\ displaystyle \ iint _ {\ mathcal {F}}} 
   
  
 
Integral over the area 
  
    
      
        
          
            F. 
           
         
       
     
    {\ displaystyle {\ mathcal {F}}} 
   
  
 
Surface integral 
 
\iint
 
 
U+222C
 
 
  
    
      
        ∭ 
       
     
    {\ displaystyle \ iiint} 
   
  
 
  
    
      
        
          ∭ 
          
            V 
           
         
       
     
    {\ displaystyle \ iiint _ {V}} 
   
  
 
Integral over the volume 
  
    
      
        V 
       
     
    {\ displaystyle V} 
   
  
 
Volume integral 
 
\iiint
 
 
U+222D
 
 
 
Vector analysis  
symbol
 
use
 
interpretation
 
items
 
Latex
 
HTML
 
Unicode
 
 
  
    
      
        ∇ 
       
     
    {\ displaystyle \ nabla} 
   
  
 
  
    
      
        ∇ 
        f 
       
     
    {\ displaystyle \ nabla f} 
   
  
 
Gradient of function 
  
    
      
        f 
       
     
    {\ displaystyle f} 
   
  
 
Gradient (math) 
 
\nabla
 
∇
 
U+2207
 
 
  
    
      
        ∇ 
        ⋅ 
        F. 
       
     
    {\ displaystyle \ nabla \ cdot F} 
   
  
 
Divergence of the vector field 
  
    
      
        F. 
       
     
    {\ displaystyle F} 
   
  
 
Divergence of a vector field 
 
 
  
    
      
        ∇ 
        × 
        F. 
       
     
    {\ displaystyle \ nabla \ times F} 
   
  
 
Rotation of the vector field 
  
    
      
        F. 
       
     
    {\ displaystyle F} 
   
  
 
Rotation of a vector field 
 
 
  
    
      
        Δ 
       
     
    {\ displaystyle \ Delta} 
   
  
 
  
    
      
        Δ 
        f 
       
     
    {\ displaystyle \ Delta f} 
   
  
 
Laplace operator of the function 
  
    
      
        f 
       
     
    {\ displaystyle f} 
   
  
 
Laplace operator 
 
\Delta
 
Δ
 
U+2206
 
 
  
    
      
        ◻ 
       
     
    {\ displaystyle \ square} 
   
  
 
  
    
      
        ◻ 
        f 
       
     
    {\ displaystyle \ square f} 
   
  
 
D'Alembert operator of the function 
  
    
      
        f 
       
     
    {\ displaystyle f} 
   
  
 
D'Alembert operator 
 
\square
 
 
U+25A1
 
 
 
topology  
symbol
 
use
 
interpretation
 
items
 
Latex
 
HTML
 
Unicode
 
 
  
    
      
        ∂ 
       
     
    {\ displaystyle \ partial} 
   
  
 
  
    
      
        ∂ 
        U 
       
     
    {\ displaystyle \ partial U} 
   
  
 
Edge of the crowd 
  
    
      
        U 
       
     
    {\ displaystyle U} 
   
  
 
Edge (topology) 
 
\partial
 
∂
 
U+2202
 
 
  
    
      
        
          
           
          
            ∘ 
           
         
       
     
    {\ displaystyle {} ^ {\ circ}} 
   
  
 
  
    
      
        
          U 
          
            ∘ 
           
         
       
     
    {\ displaystyle U ^ {\ circ}} 
   
  
 
Inside the crowd 
  
    
      
        U 
       
     
    {\ displaystyle U} 
   
  
 
Inner point 
 
\circ
 
°
 
U+02DA
 
 
  
    
      
        
          
            
                
                
             
            ¯ 
           
         
       
     
    {\ displaystyle {\ overline {~~}}} 
   
  
 
  
    
      
        
          
            U 
            ¯ 
           
         
       
     
    {\ displaystyle {\ overline {U}}} 
   
  
 
Completing the crowd 
  
    
      
        U 
       
     
    {\ displaystyle U} 
   
  
 
Degree (topology) 
 
\bar
 
 
U+0305
 
 
  
    
      
        
          
            
                
              ˙ 
             
           
         
       
     
    {\ displaystyle {\ dot {~}}} 
   
  
 
  
    
      
        
          
            
              U 
              ˙ 
             
           
         
        ( 
        x 
        ) 
       
     
    {\ displaystyle {\ dot {U}} (x)} 
   
  
 
Dotted neighborhood of the point
  
    
      
        U 
       
     
    {\ displaystyle U} 
   
 
  
    
      
        x 
       
     
    {\ displaystyle x} 
   
  
 
Dotted environment 
 
\dot
 
 
U+0307
 
 
 
Functional analysis  
symbol
 
use
 
interpretation
 
items
 
Latex
 
HTML
 
Unicode
 
 
  
    
      
        
          
           
          ′ 
         
       
     
    {\ displaystyle {} '} 
   
  
 
  
    
      
        
          V 
          ′ 
         
       
     
    {\ displaystyle V '} 
   
  
 
topological dual space of the topological vector space 
  
    
      
        V 
       
     
    {\ displaystyle V} 
   
  
 
Topological dual space 
 
\prime
 
′
 
U+2032
 
 
  
    
      
        
          
           
          ″ 
         
       
     
    {\ displaystyle {} ''} 
   
  
 
  
    
      
        
          V 
          ″ 
         
       
     
    {\ displaystyle V ''} 
   
  
 
Bidual space of the normalized vector space 
  
    
      
        V 
       
     
    {\ displaystyle V} 
   
  
 
Double room 
 
 
  
    
      
        
          
            
                
              ^ 
             
           
         
       
     
    {\ displaystyle {\ hat {~}}} 
   
  
 
  
    
      
        
          
            
              X 
              ^ 
             
           
         
       
     
    {\ displaystyle {\ hat {X}}} 
   
  
 
Completion of the metric space 
  
    
      
        X 
       
     
    {\ displaystyle X} 
   
  
 
Complete space 
 
\hat
 
 
U+0302
 
 
  
    
      
        ↪ 
       
     
    {\ displaystyle \ hookrightarrow} 
   
  
 
  
    
      
        X 
        ↪ 
        Y 
       
     
    {\ displaystyle X \ hookrightarrow Y} 
   
  
 
Embedding the topological space in the space
  
    
      
        X 
       
     
    {\ displaystyle X} 
   
 
  
    
      
        Y 
       
     
    {\ displaystyle Y} 
   
  
 
Embedding (mathematics) 
 
\hookrightarrow 
 
 
U+21AA
 
 
  
    
      
        
          
           
          
            ∗ 
           
         
       
     
    {\ displaystyle {} ^ {\ ast}} 
   
  
 
  
    
      
        
          T 
          
            ∗ 
           
         
       
     
    {\ displaystyle T ^ {\ ast}} 
   
  
 
Adjoint operator of the linear operator 
  
    
      
        T 
       
     
    {\ displaystyle T} 
   
  
 
Adjoint operator 
 
\ast
 
∗
 
U+002A
 
 
 
Measure theory 
 
symbol
 
use
 
interpretation
 
items
 
Latex
 
HTML
 
Unicode
 
 
  
    
      
        ≪ 
       
     
    {\ displaystyle \ ll} 
   
  
 
  
    
      
        ν 
        ≪ 
        μ 
       
     
    {\ displaystyle \ nu \ ll \ mu} 
   
  
 
The measure is absolutely constant regarding
  
    
      
        ν 
       
     
    {\ displaystyle \ nu} 
   
 
  
    
      
        μ 
       
     
    {\ displaystyle \ mu} 
   
  
 
Absolutely constant measure 
 
\ll
 
 
U+226A
 
 
  
    
      
        ⊥ 
       
     
    {\ displaystyle \ perp} 
   
  
 
  
    
      
        ν 
        ⊥ 
        μ 
       
     
    {\ displaystyle \ nu \ perp \ mu} 
   
  
 
The measure is singular in terms of
  
    
      
        ν 
       
     
    {\ displaystyle \ nu} 
   
 
  
    
      
        μ 
       
     
    {\ displaystyle \ mu} 
   
  
 
Singular measure 
 
\perp
 
 
U+22A5
 
 
  
    
      
        σ 
       
     
    {\ displaystyle \ sigma} 
   
  
 
  
    
      
        σ 
        ( 
        
          
            M. 
           
         
        ) 
       
     
    {\ displaystyle \ sigma ({\ mathcal {M}})} 
   
  
 
The smallest algebra that contains
  
    
      
        σ 
       
     
    {\ displaystyle \ sigma} 
   
 
  
    
      
        
          
            M. 
           
         
       
     
    {\ displaystyle {\ mathcal {M}}} 
   
  
σ-algebra 
 
\sigma
 
 
U+03A3
 
 
  
    
      
        δ 
       
     
    {\ displaystyle \ delta} 
   
  
 
  
    
      
        δ 
        ( 
        
          
            E. 
           
         
        ) 
       
     
    {\ displaystyle \ delta ({\ mathcal {E}})} 
   
  
 
The smallest Dynkin system that contains
  
    
      
        
          
            E. 
           
         
       
     
    {\ displaystyle {\ mathcal {E}}} 
   
  
Dynkin system 
 
\delta
 
 
U+0394
 
 
 
Linear algebra and geometry  
Elementary geometry  
symbol
 
use
 
interpretation
 
items
 
Latex
 
HTML
 
Unicode
 
 
  
    
      
        [ 
          
          
        ] 
       
     
    {\ displaystyle [~~]} 
   
  
 
  
    
      
        [ 
        A. 
        B. 
        ] 
       
     
    {\ displaystyle [AB]} 
   
  
 
Distance between points and
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        B. 
       
     
    {\ displaystyle B} 
   
  
 
Route (geometry) 
 
[  ]
 
 
U+005B/D
 
 
  
    
      
        
          | 
         
          
          
        
          | 
         
       
     
    {\ displaystyle | ~~ |} 
   
  
 
  
    
      
        
          | 
         
        A. 
        B. 
        
          | 
         
       
     
    {\ displaystyle | AB |} 
   
  
 
Length of the route between points and
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        B. 
       
     
    {\ displaystyle B} 
   
  
 
\vert
 
 
U+007C
 
 
  
    
      
        
          
            
                
                
             
            ¯ 
           
         
       
     
    {\ displaystyle {\ overline {~~}}} 
   
  
 
  
    
      
        
          
            
              A. 
              B. 
             
            ¯ 
           
         
       
     
    {\ displaystyle {\ overline {AB}}} 
   
  
 
\overline
 
 
U+0305
 
 
  
    
      
        
          
            
                
                
             
            → 
           
         
       
     
    {\ displaystyle {\ overrightarrow {~~}}} 
   
  
 
  
    
      
        
          
            
              A. 
              B. 
             
            → 
           
         
       
     
    {\ displaystyle {\ overrightarrow {AB}}} 
   
  
 
Connection vector of points and
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        B. 
       
     
    {\ displaystyle B} 
   
  
 
vector 
 
\vec
 
 
U+20D7
 
 
  
    
      
        ( 
          
          
        ) 
       
     
    {\ displaystyle (~~)} 
   
  
 
  
    
      
        ( 
        A. 
        B. 
        ) 
       
     
    {\ displaystyle (AB)} 
   
  
 
Line connecting the points and
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        B. 
       
     
    {\ displaystyle B} 
   
  
 
Connecting line 
 
(  )
 
 
U+0028/9
 
 
  
    
      
        ∠ 
       
     
    {\ displaystyle \ angle} 
   
  
 
  
    
      
        ∠ 
        A. 
        B. 
        C. 
       
     
    {\ displaystyle \ angle ABC} 
   
  
 
Angle with the thighs and
  
    
      
        B. 
        A. 
       
     
    {\ displaystyle BA} 
   
 
  
    
      
        B. 
        C. 
       
     
    {\ displaystyle BC} 
   
  
 
angle 
 
\angle
 
∠
 
U+2220
 
 
  
    
      
        △ 
       
     
    {\ displaystyle \ triangle} 
   
  
 
  
    
      
        △ 
        A. 
        B. 
        C. 
       
     
    {\ displaystyle \ triangle ABC} 
   
  
 
Triangle with corner points , and
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        B. 
       
     
    {\ displaystyle B} 
   
 
  
    
      
        C. 
       
     
    {\ displaystyle C} 
   
  
 
triangle 
 
\triangle
 
 
U+25B3
 
 
  
    
      
        ◻ 
       
     
    {\ displaystyle \ square} 
   
  
 
  
    
      
        ◻ 
        
          
            A. 
            B. 
            C. 
            D. 
           
         
       
     
    {\ displaystyle \ square {\ mathit {ABCD}}} 
   
  
 
Rectangle with the corners , , and
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        B. 
       
     
    {\ displaystyle B} 
   
 
  
    
      
        C. 
       
     
    {\ displaystyle C} 
   
 
  
    
      
        D. 
       
     
    {\ displaystyle D} 
   
  
 
square 
 
\square
 
 
U+25A1
 
 
  
    
      
        ∥ 
       
     
    {\ displaystyle \ parallel} 
   
  
 
  
    
      
        G 
        ∥ 
        H 
       
     
    {\ displaystyle g \ parallel h} 
   
  
 
the straight lines and are parallel to each other
  
    
      
        G 
       
     
    {\ displaystyle g} 
   
 
  
    
      
        H 
       
     
    {\ displaystyle h} 
   
  
Parallelism (geometry) 
 
\parallel
 
 
U+2225
 
 
  
    
      
        ∦ 
       
     
    {\ displaystyle \ nparallel} 
   
  
 
  
    
      
        G 
        ∦ 
        H 
       
     
    {\ displaystyle g \ nparallel h} 
   
  
 
the straight lines and are not parallel to each other
  
    
      
        G 
       
     
    {\ displaystyle g} 
   
 
  
    
      
        H 
       
     
    {\ displaystyle h} 
   
  
\nparallel
 
 
U+2226
 
 
  
    
      
        ⊥ 
       
     
    {\ displaystyle \ perp} 
   
  
 
  
    
      
        G 
        ⊥ 
        H 
       
     
    {\ displaystyle g \ perp h} 
   
  
 
the straight lines and are orthogonal to each other
  
    
      
        G 
       
     
    {\ displaystyle g} 
   
 
  
    
      
        H 
       
     
    {\ displaystyle h} 
   
  
Orthogonality 
 
\perp
 
⊥
 
U+22A5
 
 
 
Vectors and matrices  
symbol
 
interpretation
 
items
 
Latex
 
 
  
    
      
        
          
            ( 
            
              
                
                  
                    v 
                    
                      1 
                     
                   
                  , 
                  ... 
                  , 
                  
                    v 
                    
                      n 
                     
                   
                 
               
             
            ) 
           
         
       
     
    {\ displaystyle {\ begin {pmatrix} v_ {1}, \ ldots, v_ {n} \ end {pmatrix}}} 
   
  
 
Line vector consisting of the elements to
  
    
      
        
          v 
          
            1 
           
         
       
     
    {\ displaystyle v_ {1}} 
   
 
  
    
      
        
          v 
          
            n 
           
         
       
     
    {\ displaystyle v_ {n}} 
   
  
 
vector 
 
\begin{pmatrix}...\end{pmatrix} or\left(\begin{array}{...}...\end{array}\right)
 
 
  
    
      
        
          
            ( 
            
              
                
                  
                    v 
                    
                      1 
                     
                   
                 
               
              
                
                  ⋮ 
                 
               
              
                
                  
                    v 
                    
                      m 
                     
                   
                 
               
             
            ) 
           
         
       
     
    {\ displaystyle {\ begin {pmatrix} v_ {1} \\\ vdots \\ v_ {m} \ end {pmatrix}}} 
   
  
 
Column vector consisting of the elements to
  
    
      
        
          v 
          
            1 
           
         
       
     
    {\ displaystyle v_ {1}} 
   
 
  
    
      
        
          v 
          
            m 
           
         
       
     
    {\ displaystyle v_ {m}} 
   
  
 
 
  
    
      
        
          
            ( 
            
              
                
                  
                    a 
                    
                      11 
                     
                   
                 
                
                   
                  ... 
                   
                 
                
                  
                    a 
                    
                      1 
                      n 
                     
                   
                 
               
              
                
                  ⋮ 
                 
                
                   
                  ⋱ 
                   
                 
                
                  ⋮ 
                 
               
              
                
                  
                    a 
                    
                      m 
                      1 
                     
                   
                 
                
                   
                  ... 
                   
                 
                
                  
                    a 
                    
                      m 
                      n 
                     
                   
                 
               
             
            ) 
           
         
       
     
    {\ displaystyle {\ begin {pmatrix} a_ {11} & \! \ ldots \! & a_ {1n} \\\ vdots & \! \ ddots \! & \ vdots \\ a_ {m1} & \! \ ldots \ ! & a_ {mn} \ end {pmatrix}}} 
   
  
 
Matrix consisting of the elements to
  
    
      
        
          a 
          
            11 
           
         
       
     
    {\ displaystyle a_ {11}} 
   
 
  
    
      
        
          a 
          
            m 
            n 
           
         
       
     
    {\ displaystyle a_ {mn}} 
   
  
 
Matrix (math) 
 
 
 
Vector calculation  
symbol
 
use
 
interpretation
 
items
 
Latex
 
HTML
 
Unicode
 
 
  
    
      
        ⋅ 
       
     
    {\ displaystyle \ cdot} 
   
  
 
  
    
      
        v 
        ⋅ 
        w 
       
     
    {\ displaystyle v \ cdot w} 
   
  
 
Dot product of the vectors and
  
    
      
        v 
       
     
    {\ displaystyle v} 
   
 
  
    
      
        w 
       
     
    {\ displaystyle w} 
   
  
 
Scalar product 
 
\cdot
 
·
 
U+22C5
 
 
  
    
      
        ( 
          
          
        ) 
       
     
    {\ displaystyle (~~)} 
   
  
 
  
    
      
        ( 
        v 
        , 
        w 
        ) 
       
     
    {\ displaystyle (v, w)} 
   
  
 
(  )
 
 
U+0028/9
 
 
  
    
      
        ⟨ 
          
          
        ⟩ 
       
     
    {\ displaystyle \ langle ~~ \ rangle} 
   
  
 
  
    
      
        ⟨ 
        v 
        , 
        w 
        ⟩ 
       
     
    {\ displaystyle \ langle v, w \ rangle} 
   
 
  
    
      
        ⟨ 
        v 
         
        
          | 
         
         
        w 
        ⟩ 
       
     
    {\ displaystyle \ langle v \, | \, w \ rangle} 
   
  
 
\langle \rangle
 
⟨ ⟩
 
U+27E8/9
 
 
  
    
      
        × 
       
     
    {\ displaystyle \ times} 
   
  
 
  
    
      
        v 
        × 
        w 
       
     
    {\ displaystyle v \ times w} 
   
  
 
Cross product (vector product) of the vectors and
  
    
      
        v 
       
     
    {\ displaystyle v} 
   
 
  
    
      
        w 
       
     
    {\ displaystyle w} 
   
  
 
Cross product 
 
\times
 
×
 
U+2A2F
 
 
  
    
      
        [ 
          
          
        ] 
       
     
    {\ displaystyle [~~]} 
   
  
 
  
    
      
        [ 
        v 
        , 
        w 
        ] 
       
     
    {\ displaystyle [v, w]} 
   
  
 
[  ]
 
 
U+005B/D
 
 
  
    
      
        ( 
          
          
        ) 
       
     
    {\ displaystyle (~~)} 
   
  
 
  
    
      
        ( 
        u 
        , 
        v 
        , 
        w 
        ) 
       
     
    {\ displaystyle (u, v, w)} 
   
  
 
Late product of vectors , and
  
    
      
        u 
       
     
    {\ displaystyle u} 
   
 
  
    
      
        v 
       
     
    {\ displaystyle v} 
   
 
  
    
      
        w 
       
     
    {\ displaystyle w} 
   
  
 
Late product 
 
(  )
 
 
U+0028/9
 
 
  
    
      
        ⊗ 
       
     
    {\ displaystyle \ otimes} 
   
  
 
  
    
      
        v 
        ⊗ 
        w 
       
     
    {\ displaystyle v \ otimes w} 
   
  
 
dyadic product of vectors and
  
    
      
        v 
       
     
    {\ displaystyle v} 
   
 
  
    
      
        w 
       
     
    {\ displaystyle w} 
   
  
 
Dyadic product 
 
\otimes
 
⊗
 
U+2297
 
 
  
    
      
        ∧ 
       
     
    {\ displaystyle \ wedge} 
   
  
 
  
    
      
        v 
        ∧ 
        w 
       
     
    {\ displaystyle v \ wedge w} 
   
  
 
Umbrella product of vectors and
  
    
      
        v 
       
     
    {\ displaystyle v} 
   
 
  
    
      
        w 
       
     
    {\ displaystyle w} 
   
  
 
Roof product 
 
\wedge
 
 
U+2227
 
 
  
    
      
        
          | 
         
          
          
        
          | 
         
       
     
    {\ displaystyle | ~~ |} 
   
  
 
  
    
      
        
          | 
         
        v 
        
          | 
         
       
     
    {\ displaystyle | v |} 
   
  
 
Amount of the vector 
  
    
      
        v 
       
     
    {\ displaystyle v} 
   
  
 
vector 
 
\vert
 
 
U+007C
 
 
  
    
      
        ‖ 
          
          
        ‖ 
       
     
    {\ displaystyle \ | ~~ \ |} 
   
  
 
  
    
      
        ‖ 
        v 
        ‖ 
       
     
    {\ displaystyle \ | v \ |} 
   
  
 
Norm of the vector 
  
    
      
        v 
       
     
    {\ displaystyle v} 
   
  
 
Vector norm 
 
\Vert, \|
 
 
U+2016
 
 
  
    
      
        
          
            
                
              ^ 
             
           
         
       
     
    {\ displaystyle {\ hat {~}}} 
   
  
 
  
    
      
        
          
            
              v 
              ^ 
             
           
         
       
     
    {\ displaystyle {\ hat {v}}} 
   
  
 
Unit vector to vector 
  
    
      
        v 
       
     
    {\ displaystyle v} 
   
  
 
Unit vector 
 
\hat
 
 
U+0302
 
 
 
Matrix calculation  
symbol
 
use
 
interpretation
 
items
 
Latex
 
HTML
 
Unicode
 
 
  
    
      
        ⋅ 
       
     
    {\ displaystyle \ cdot} 
   
  
 
  
    
      
        A. 
        ⋅ 
        B. 
       
     
    {\ displaystyle A \ cdot B} 
   
  
 
Product of the matrices and
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        B. 
       
     
    {\ displaystyle B} 
   
  
 
Matrix multiplication 
 
\cdot
 
·
 
U+22C5
 
 
  
    
      
        : 
       
     
    {\ displaystyle \ colon} 
   
  
 
  
    
      
        A. 
         
        : 
         
        B. 
       
     
    {\ displaystyle A \, \ colon \, B} 
   
  
 
Frobenius dot product of the matrices and (in physics)
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        B. 
       
     
    {\ displaystyle B} 
   
  
Frobenius dot product 
 
\colon
 
 
U+003A
 
 
  
    
      
        ∘ 
       
     
    {\ displaystyle \ circ} 
   
  
 
  
    
      
        A. 
        ∘ 
        B. 
       
     
    {\ displaystyle A \ circ B} 
   
  
 
Hadamard product of the matrices and
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        B. 
       
     
    {\ displaystyle B} 
   
  
 
Hadamard product 
 
\circ
 
 
U+2218
 
 
  
    
      
        ⊗ 
       
     
    {\ displaystyle \ otimes} 
   
  
 
  
    
      
        A. 
        ⊗ 
        B. 
       
     
    {\ displaystyle A \ otimes B} 
   
  
 
Kronecker product of the dies and
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        B. 
       
     
    {\ displaystyle B} 
   
  
 
Kronecker product 
 
\otimes
 
⊗
 
U+2297
 
 
  
    
      
        
          
           
          
            T 
           
         
       
     
    {\ displaystyle {} ^ {T}} 
   
  
 
  
    
      
        
          A. 
          
            T 
           
         
       
     
    {\ displaystyle A ^ {T}} 
   
  
 
transposed matrix of the matrix 
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
  
 
Transposed matrix 
 
T
 
 
U+0054
 
 
  
    
      
        
          
           
          
            H 
           
         
       
     
    {\ displaystyle {} ^ {H}} 
   
  
 
  
    
      
        
          A. 
          
            H 
           
         
       
     
    {\ displaystyle A ^ {H}} 
   
  
 
adjoint matrix of the matrix 
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
  
 
Adjoint matrix 
 
H
 
 
U+0048
 
 
  
    
      
        
          
           
          
            ∗ 
           
         
       
     
    {\ displaystyle {} ^ {\ ast}} 
   
  
 
  
    
      
        
          A. 
          
            ∗ 
           
         
       
     
    {\ displaystyle A ^ {\ ast}} 
   
  
 
\ast
 
∗
 
U+002A
 
 
  
    
      
        
          
           
          
            † 
           
         
       
     
    {\ displaystyle {} ^ {\ dagger}} 
   
  
 
  
    
      
        
          A. 
          
            † 
           
         
       
     
    {\ displaystyle A ^ {\ dagger}} 
   
  
 
\dagger
 
†
 
U+2020
 
 
  
    
      
        
          
           
          
            - 
            1 
           
         
       
     
    {\ displaystyle {} ^ {- 1}} 
   
  
 
  
    
      
        
          A. 
          
            - 
            1 
           
         
       
     
    {\ displaystyle A ^ {- 1}} 
   
  
 
inverse matrix of the matrix 
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
  
 
Inverse matrix 
 
-1
 
 
U+207B
 
 
  
    
      
        
          
           
          
            + 
           
         
       
     
    {\ displaystyle {} ^ {+}} 
   
  
 
  
    
      
        
          A. 
          
            + 
           
         
       
     
    {\ displaystyle A ^ {+}} 
   
  
 
Moore-Penrose Inverse of the Matrix 
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
  
 
Pseudoinverse 
 
+
 
 
U+002B
 
 
  
    
      
        
          | 
         
          
          
        
          | 
         
       
     
    {\ displaystyle | ~~ |} 
   
  
 
  
    
      
        
          | 
         
        A. 
        
          | 
         
       
     
    {\ displaystyle | A |} 
   
  
 
Determinant of the matrix 
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
  
 
Determinant (mathematics) 
 
\vert
 
 
U+007C
 
 
  
    
      
        ‖ 
          
          
        ‖ 
       
     
    {\ displaystyle \ | ~~ \ |} 
   
  
 
  
    
      
        ‖ 
        A. 
        ‖ 
       
     
    {\ displaystyle \ | A \ |} 
   
  
 
Norm of the matrix 
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
  
 
Matrix norm 
 
\Vert, \|
 
 
U+2016
 
 
 
Vector spaces 
 
symbol
 
use
 
interpretation
 
items
 
Latex
 
HTML
 
Unicode
 
 
  
    
      
        + 
       
     
    {\ displaystyle +} 
   
  
 
  
    
      
        V 
        + 
        W. 
       
     
    {\ displaystyle V + W} 
   
  
 
Sum of the vector spaces and
  
    
      
        V 
       
     
    {\ displaystyle V} 
   
 
  
    
      
        W. 
       
     
    {\ displaystyle W} 
   
  
 
Direct sum 
 
+
 
 
U+002B
 
 
  
    
      
        ⊕ 
       
     
    {\ displaystyle \ oplus} 
   
  
 
  
    
      
        V 
        ⊕ 
        W. 
       
     
    {\ displaystyle V \ oplus W} 
   
  
 
direct sum of the vector spaces and
  
    
      
        V 
       
     
    {\ displaystyle V} 
   
 
  
    
      
        W. 
       
     
    {\ displaystyle W} 
   
  
 
\oplus
 
⊕
 
U+2295
 
 
  
    
      
        × 
       
     
    {\ displaystyle \ times} 
   
  
 
  
    
      
        V 
        × 
        W. 
       
     
    {\ displaystyle V \ times W} 
   
  
 
direct product of the vector spaces and
  
    
      
        V 
       
     
    {\ displaystyle V} 
   
 
  
    
      
        W. 
       
     
    {\ displaystyle W} 
   
  
 
Direct product 
 
\times
 
×
 
U+2A2F
 
 
  
    
      
        ⊗ 
       
     
    {\ displaystyle \ otimes} 
   
  
 
  
    
      
        V 
        ⊗ 
        W. 
       
     
    {\ displaystyle V \ otimes W} 
   
  
 
Tensor product of the vector spaces and
  
    
      
        V 
       
     
    {\ displaystyle V} 
   
 
  
    
      
        W. 
       
     
    {\ displaystyle W} 
   
  
 
Tensor product 
 
\otimes
 
⊗
 
U+2297
 
 
  
    
      
        
          / 
         
       
     
    {\ displaystyle /} 
   
  
 
  
    
      
        V 
         
        
          / 
         
         
        U 
       
     
    {\ displaystyle V \, / \, U} 
   
  
 
Factor space of the vector space after the sub-vector space
  
    
      
        V 
       
     
    {\ displaystyle V} 
   
 
  
    
      
        U 
       
     
    {\ displaystyle U} 
   
  
 
Factor space 
 
/
 
⁄
 
U+002F
 
 
  
    
      
        
          
           
          
            ⊥ 
           
         
       
     
    {\ displaystyle {} ^ {\ perp}} 
   
  
 
  
    
      
        
          U 
          
            ⊥ 
           
         
       
     
    {\ displaystyle U ^ {\ perp}} 
   
  
 
orthogonal complement of subspace 
  
    
      
        U 
       
     
    {\ displaystyle U} 
   
  
 
Orthogonal complement 
 
\perp
 
⊥
 
U+27C2
 
 
  
    
      
        
          
           
          
            ∗ 
           
         
       
     
    {\ displaystyle {} ^ {\ ast}} 
   
  
 
  
    
      
        
          V 
          
            ∗ 
           
         
       
     
    {\ displaystyle V ^ {\ ast}} 
   
  
 
Dual space of vector space 
  
    
      
        V 
       
     
    {\ displaystyle V} 
   
  
 
Dual space 
 
\ast
 
∗
 
U+002A
 
 
  
    
      
        
          
           
          
            0 
           
         
       
     
    {\ displaystyle {} ^ {0}} 
   
  
 
  
    
      
        
          X 
          
            0 
           
         
       
     
    {\ displaystyle X ^ {0}} 
   
  
 
Annihilator space of the set of vectors 
  
    
      
        X 
       
     
    {\ displaystyle X} 
   
  
 
Annihilator (mathematics) 
 
0
 
 
U+0030
 
 
  
    
      
        ⟨ 
          
          
        ⟩ 
       
     
    {\ displaystyle \ langle ~~ \ rangle} 
   
  
 
  
    
      
        ⟨ 
        X 
        ⟩ 
       
     
    {\ displaystyle \ langle X \ rangle} 
   
  
 
linear envelope of the set of vectors 
  
    
      
        X 
       
     
    {\ displaystyle X} 
   
  
 
Linear envelope 
 
\langle \rangle
 
⟨ ⟩
 
U+27E8/9
 
 
 
algebra  
Relations  
symbol
 
use
 
interpretation
 
items
 
Latex
 
HTML
 
Unicode
 
 
  
    
      
        ∘ 
       
     
    {\ displaystyle \ circ} 
   
  
 
  
    
      
        R. 
        ∘ 
        S. 
       
     
    {\ displaystyle R \ circ S} 
   
  
 
Composition of relations and
  
    
      
        R. 
       
     
    {\ displaystyle R} 
   
 
  
    
      
        S. 
       
     
    {\ displaystyle S} 
   
  
 
Composition (mathematics) 
 
\circ
 
 
U+2218
 
 
  
    
      
        a 
        ∘ 
        b 
       
     
    {\ displaystyle a \ circ b} 
   
  
 
Linking the elements and (in general)
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
 
  
    
      
        b 
       
     
    {\ displaystyle b} 
   
  
Linkage (math) 
 
 
  
    
      
        ∙ 
       
     
    {\ displaystyle \ bullet} 
   
  
 
  
    
      
        a 
        ∙ 
        b 
       
     
    {\ displaystyle a \ bullet b} 
   
  
 
\bullet
 
•
 
U+2219
 
 
  
    
      
        ∗ 
       
     
    {\ displaystyle \ ast} 
   
  
 
  
    
      
        a 
        ∗ 
        b 
       
     
    {\ displaystyle a \ ast b} 
   
  
 
\ast
 
∗
 
U+2217
 
 
  
    
      
        ≤ 
       
     
    {\ displaystyle \ leq} 
   
  
 
  
    
      
        a 
        ≤ 
        b 
       
     
    {\ displaystyle a \ leq b} 
   
  
 
Order relation between the elements and
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
 
  
    
      
        b 
       
     
    {\ displaystyle b} 
   
  
 
Order relation 
 
\leq
 
≤
 
U+2264
 
 
  
    
      
        ≺ 
       
     
    {\ displaystyle \ prec} 
   
  
 
  
    
      
        a 
        ≺ 
        b 
       
     
    {\ displaystyle a \ prec b} 
   
  
 
the element is ancestor of the element
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
 
  
    
      
        b 
       
     
    {\ displaystyle b} 
   
  
 
Successor (mathematics) 
 
\prec
 
 
U+227A
 
 
  
    
      
        ≻ 
       
     
    {\ displaystyle \ succ} 
   
  
 
  
    
      
        a 
        ≻ 
        b 
       
     
    {\ displaystyle a \ succ b} 
   
  
 
the element is the successor of the element
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
 
  
    
      
        b 
       
     
    {\ displaystyle b} 
   
  
 
\succ
 
 
U+227B
 
 
  
    
      
        ∼ 
       
     
    {\ displaystyle \ sim} 
   
  
 
  
    
      
        a 
        ∼ 
        b 
       
     
    {\ displaystyle a \ sim b} 
   
  
 
Equivalence relation between the elements and
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
 
  
    
      
        b 
       
     
    {\ displaystyle b} 
   
  
 
Equivalence relation 
 
\sim
 
∼
 
U+223C
 
 
  
    
      
        [ 
          
          
        ] 
       
     
    {\ displaystyle [~~]} 
   
  
 
  
    
      
        [ 
        a 
        ] 
       
     
    {\ displaystyle [a]} 
   
  
 
Equivalence class of the element 
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
  
 
Equivalence class 
 
[  ]
 
 
U+005B/D
 
 
  
    
      
        
          / 
         
       
     
    {\ displaystyle /} 
   
  
 
  
    
      
        M. 
        
          / 
         
        ∼ 
       
     
    {\ displaystyle M / \ sim} 
   
  
 
Factor set of the set according to the equivalence relation
  
    
      
        M. 
       
     
    {\ displaystyle M} 
   
 
  
    
      
        ∼ 
       
     
    {\ displaystyle \ sim} 
   
  
 
Set of factors (math) 
 
/
 
⁄
 
U+002F
 
 
  
    
      
        
          
           
          
            - 
            1 
           
         
       
     
    {\ displaystyle {} ^ {- 1}} 
   
  
 
  
    
      
        
          R. 
          
            - 
            1 
           
         
       
     
    {\ displaystyle R ^ {- 1}} 
   
  
 
Inverse relation of relation 
  
    
      
        R. 
       
     
    {\ displaystyle R} 
   
  
 
Inverse relation 
 
-1
 
 
U+207B
 
 
  
    
      
        
          
           
          
            + 
           
         
       
     
    {\ displaystyle {} ^ {+}} 
   
  
 
  
    
      
        
          R. 
          
            + 
           
         
       
     
    {\ displaystyle R ^ {+}} 
   
  
 
Transitive envelope of the relation 
  
    
      
        R. 
       
     
    {\ displaystyle R} 
   
  
 
Transitive envelope (relation) 
 
+
 
 
U+002B
 
 
  
    
      
        
          
           
          
            ∗ 
           
         
       
     
    {\ displaystyle {} ^ {\ ast}} 
   
  
 
  
    
      
        
          R. 
          
            ∗ 
           
         
       
     
    {\ displaystyle R ^ {\ ast}} 
   
  
 
Reflexive-transitive envelope of the relation 
  
    
      
        R. 
       
     
    {\ displaystyle R} 
   
  
 
\ast
 
∗
 
U+002A
 
 
 
Group theory  
symbol
 
use
 
interpretation
 
items
 
Latex
 
HTML
 
Unicode
 
 
  
    
      
        ≃ 
       
     
    {\ displaystyle \ simeq} 
   
  
 
  
    
      
        G 
        ≃ 
        H 
       
     
    {\ displaystyle G \ simeq H} 
   
  
 
the groups and are isomorphic
  
    
      
        G 
       
     
    {\ displaystyle G} 
   
 
  
    
      
        H 
       
     
    {\ displaystyle H} 
   
  
Group isomorphism 
 
\simeq
 
 
U+2243
 
 
  
    
      
        ≅ 
       
     
    {\ displaystyle \ cong} 
   
  
 
  
    
      
        G 
        ≅ 
        H 
       
     
    {\ displaystyle G \ cong H} 
   
  
 
\cong
 
≅
 
U+2245
 
 
  
    
      
        × 
       
     
    {\ displaystyle \ times} 
   
  
 
  
    
      
        G 
        × 
        H 
       
     
    {\ displaystyle G \ times H} 
   
  
 
Direct product of groups and
  
    
      
        G 
       
     
    {\ displaystyle G} 
   
 
  
    
      
        H 
       
     
    {\ displaystyle H} 
   
  
 
Direct product 
 
\times
 
×
 
U+2A2F
 
 
  
    
      
        ⋊ 
       
     
    {\ displaystyle \ rtimes} 
   
  
 
  
    
      
        G 
        ⋊ 
        H 
       
     
    {\ displaystyle G \ rtimes H} 
   
  
 
Semi-direct product of groups and
  
    
      
        G 
       
     
    {\ displaystyle G} 
   
 
  
    
      
        H 
       
     
    {\ displaystyle H} 
   
  
 
Semi-direct product 
 
\rtimes
 
 
U+22CA
 
 
  
    
      
        ≀ 
       
     
    {\ displaystyle \ wr} 
   
  
 
  
    
      
        G 
         
        ≀ 
         
        H 
       
     
    {\ displaystyle G \, \ wr \, H} 
   
  
 
Wreath product of groups and
  
    
      
        G 
       
     
    {\ displaystyle G} 
   
 
  
    
      
        H 
       
     
    {\ displaystyle H} 
   
  
 
Wreath product 
 
\wr
 
 
U+2240
 
 
  
    
      
        ≤ 
       
     
    {\ displaystyle \ leq} 
   
  
 
  
    
      
        U 
        ≤ 
        G 
       
     
    {\ displaystyle U \ leq G} 
   
  
 
  
    
      
        U 
       
     
    {\ displaystyle U} 
   
   is a subgroup of the group 
  
    
      
        G 
       
     
    {\ displaystyle G} 
   
  
 
Subgroup 
 
\leq
 
≤
 
U+2264
 
 
  
    
      
        < 
       
     
    {\ displaystyle <} 
   
  
 
  
    
      
        U 
        < 
        G 
       
     
    {\ displaystyle U <G} 
   
  
 
  
    
      
        U 
       
     
    {\ displaystyle U} 
   
   is a real subgroup of the group 
  
    
      
        G 
       
     
    {\ displaystyle G} 
   
  
 
\lt
 
<
 
U+003C
 
 
  
    
      
        ⊲ 
       
     
    {\ displaystyle \ vartriangleleft} 
   
  
 
  
    
      
        N 
        ⊲ 
        G 
       
     
    {\ displaystyle N \ vartriangleleft G} 
   
  
 
  
    
      
        N 
       
     
    {\ displaystyle N} 
   
   is a normal part of the group 
  
    
      
        G 
       
     
    {\ displaystyle G} 
   
  
 
Normal divider 
 
\vartriangleleft
 
 
U+22B2
 
 
  
    
      
        ⊴ 
       
     
    {\ displaystyle \ trianglelefteq} 
   
  
 
  
    
      
        N 
        ⊴ 
        G 
       
     
    {\ displaystyle N \ trianglelefteq G} 
   
  
 
\trianglelefteq
 
 
 
 
  
    
      
        
          / 
         
       
     
    {\ displaystyle /} 
   
  
 
  
    
      
        G 
        
          / 
         
        N 
       
     
    {\ displaystyle G / N} 
   
  
 
Factor group of the group after the normal divisor
  
    
      
        G 
       
     
    {\ displaystyle G} 
   
 
  
    
      
        N 
       
     
    {\ displaystyle N} 
   
  
 
Factor group 
 
/
 
⁄
 
U+002F
 
 
  
    
      
        : 
       
     
    {\ displaystyle \ colon} 
   
  
 
  
    
      
        ( 
        G 
        : 
        U 
        ) 
       
     
    {\ displaystyle (G \ colon U)} 
   
  
 
Index of the subgroup in the group
  
    
      
        U 
       
     
    {\ displaystyle U} 
   
 
  
    
      
        G 
       
     
    {\ displaystyle G} 
   
  
 
Index (group theory) 
 
\colon
 
 
U+003A
 
 
  
    
      
        ⟨ 
          
          
        ⟩ 
       
     
    {\ displaystyle \ langle ~~ \ rangle} 
   
  
 
  
    
      
        ⟨ 
        E. 
        ⟩ 
       
     
    {\ displaystyle \ langle E \ rangle} 
   
  
 
Subgroup by the amount is generated
  
    
      
        E. 
       
     
    {\ displaystyle E} 
   
  
Producer (algebra) 
 
\langle \rangle
 
⟨ ⟩
 
U+27E8/9
 
 
  
    
      
        ( 
          
          
        ) 
       
     
    {\ displaystyle (~~)} 
   
  
 
  
    
      
        ( 
        G 
        , 
        H 
        ) 
       
     
    {\ displaystyle (g, h)} 
   
  
 
Conjugation of group elements and
  
    
      
        G 
       
     
    {\ displaystyle g} 
   
 
  
    
      
        H 
       
     
    {\ displaystyle h} 
   
  
 
Conjugation (group theory) 
 
(  )
 
 
U+0028/9
 
 
  
    
      
        [ 
          
          
        ] 
       
     
    {\ displaystyle [~~]} 
   
  
 
  
    
      
        [ 
        G 
        , 
        H 
        ] 
       
     
    {\ displaystyle [g, h]} 
   
  
 
Commutator of group elements and
  
    
      
        G 
       
     
    {\ displaystyle g} 
   
 
  
    
      
        H 
       
     
    {\ displaystyle h} 
   
  
 
Commutator (math) 
 
[  ]
 
 
U+005B/D
 
 
 
Body theory 
 
symbol
 
use
 
interpretation
 
items
 
Latex
 
HTML
 
Unicode
 
 
  
    
      
        
          / 
         
       
     
    {\ displaystyle /} 
   
  
 
  
    
      
        L. 
        
          / 
         
        K 
       
     
    {\ displaystyle L / K} 
   
  
 
Extension of the body over the body
  
    
      
        L. 
       
     
    {\ displaystyle L} 
   
 
  
    
      
        K 
       
     
    {\ displaystyle K} 
   
  
 
Body enlargement 
 
/
 
⁄
 
U+002F
 
 
  
    
      
        ∣ 
       
     
    {\ displaystyle \ mid} 
   
  
 
  
    
      
        L. 
        ∣ 
        K 
       
     
    {\ displaystyle L \ mid K} 
   
  
 
\mid
 
 
U+007C
 
 
  
    
      
        : 
       
     
    {\ displaystyle \ colon} 
   
  
 
  
    
      
        L. 
        : 
        K 
       
     
    {\ displaystyle L \ colon K} 
   
  
 
\colon
 
 
U+003A
 
 
  
    
      
        [ 
        L. 
        : 
        K 
        ] 
       
     
    {\ displaystyle [L \ colon K]} 
   
  
 
Degree of body enlargement over
  
    
      
        L. 
       
     
    {\ displaystyle L} 
   
 
  
    
      
        K 
       
     
    {\ displaystyle K} 
   
  
 
Degree of expansion 
 
 
  
    
      
        
          
            
                
                
             
            ¯ 
           
         
       
     
    {\ displaystyle {\ overline {~~}}} 
   
  
 
  
    
      
        
          
            K 
            ¯ 
           
         
       
     
    {\ displaystyle {\ overline {K}}} 
   
  
 
Algebraic closure of the body 
  
    
      
        K 
       
     
    {\ displaystyle K} 
   
  
 
Algebraic degree 
 
\overline
 
 
U+0305
 
 
  
    
      
        
          K 
         
       
     
    {\ displaystyle \ mathbb {K}} 
   
  
 
 
Field of real or complex numbers
 
Body (algebra) 
 
\mathbb{K}
 
 
U+1D542
 
 
  
    
      
        
          F. 
         
       
     
    {\ displaystyle \ mathbb {F}} 
   
  
 
 
finite body
 
Finite body 
 
\mathbb{F}
 
 
U+1D53D
 
 
 
Ring theory  
symbol
 
use
 
interpretation
 
items
 
Latex
 
HTML
 
Unicode
 
 
  
    
      
        
          
           
          
            ∗ 
           
         
       
     
    {\ displaystyle {} ^ {\ ast}} 
   
  
 
  
    
      
        
          R. 
          
            ∗ 
           
         
       
     
    {\ displaystyle R ^ {\ ast}} 
   
  
 
Unit group of the ring 
  
    
      
        R. 
       
     
    {\ displaystyle R} 
   
  
 
Unit group 
 
\ast
 
∗
 
U+2217
 
 
  
    
      
        
          
           
          
            × 
           
         
       
     
    {\ displaystyle {} ^ {\ times}} 
   
  
 
  
    
      
        
          R. 
          
            × 
           
         
       
     
    {\ displaystyle R ^ {\ times}} 
   
  
 
\times
 
×
 
U+2A2F
 
 
  
    
      
        ⊲ 
       
     
    {\ displaystyle \ vartriangleleft} 
   
  
 
  
    
      
        I. 
        ⊲ 
        R. 
       
     
    {\ displaystyle I \ vartriangleleft R} 
   
  
 
  
    
      
        I. 
       
     
    {\ displaystyle I} 
   
   is an ideal of the ring 
  
    
      
        R. 
       
     
    {\ displaystyle R} 
   
  
 
Ideal (ring theory) 
 
\vartriangleleft 
 
 
U+22B2
 
 
  
    
      
        
          / 
         
       
     
    {\ displaystyle /} 
   
  
 
  
    
      
        R. 
        
          / 
         
        I. 
       
     
    {\ displaystyle R / I} 
   
  
 
Factor ring of the ring according to the ideal
  
    
      
        R. 
       
     
    {\ displaystyle R} 
   
 
  
    
      
        I. 
       
     
    {\ displaystyle I} 
   
  
 
Factor ring 
 
/
 
⁄
 
U+002F
 
 
  
    
      
        [ 
          
          
        ] 
       
     
    {\ displaystyle [~~]} 
   
  
 
  
    
      
        R. 
        [ 
        X 
        ] 
       
     
    {\ displaystyle R [X]} 
   
  
 
Polynomial ring above the ring with the variable
  
    
      
        R. 
       
     
    {\ displaystyle R} 
   
 
  
    
      
        X 
       
     
    {\ displaystyle X} 
   
  
 
Polynomial ring 
 
[  ]
 
 
U+005B/D
 
 
 
Stochastics  
Combinatorics  
symbol
 
use
 
interpretation
 
items
 
Latex
 
HTML
 
Unicode
 
 
  
    
      
        ! 
       
     
    {\ displaystyle!} 
   
  
 
  
    
      
        n 
        ! 
       
     
    {\ displaystyle n!} 
   
  
 
Number of permutations of elements
  
    
      
        n 
       
     
    {\ displaystyle n} 
   
  
Faculty 
 
!
 
 
U+0021
 
 
  
    
      
        ! 
        n 
       
     
    {\ displaystyle! n} 
   
  
 
Number of fixed-point-free permutations of elements
  
    
      
        n 
       
     
    {\ displaystyle n} 
   
  
Sub-faculty 
 
 
  
    
      
        n 
        ! 
        ! 
       
     
    {\ displaystyle n !!} 
   
  
 
Number of genuinely involutive permutations ( odd)
  
    
      
        n 
       
     
    {\ displaystyle n} 
   
  
Double faculty 
 
 
  
    
      
        
          
            
              
                ( 
               
              
                  
                  
               
              
                ) 
               
             
           
         
       
     
    {\ displaystyle {\ tbinom {~} {~}}} 
   
  
 
  
    
      
        
          
            
              
                ( 
               
              
                n 
                k 
               
              
                ) 
               
             
           
         
       
     
    {\ displaystyle {\ tbinom {n} {k}}} 
   
  
 
Number of combinations without repetition of of elements
  
    
      
        k 
       
     
    {\ displaystyle k} 
   
 
  
    
      
        n 
       
     
    {\ displaystyle n} 
   
  
Binomial coefficient 
 
\binom
 
 
U+0028/9
 
 
  
    
      
        
          
            
              
                ( 
               
              
                n 
                
                  
                    k 
                    
                      1 
                     
                   
                  , 
                  ... 
                  , 
                  
                    k 
                    
                      r 
                     
                   
                 
               
              
                ) 
               
             
           
         
       
     
    {\ displaystyle {\ tbinom {n} {k_ {1}, \ ldots, k_ {r}}}} 
   
  
 
Number of arrangements of different elements
  
    
      
        
          k 
          
            1 
           
         
        , 
        ... 
        , 
        
          k 
          
            r 
           
         
       
     
    {\ displaystyle k_ {1}, \ ldots, k_ {r}} 
   
  
Multinomial coefficient 
 
 
  
    
      
        
          ( 
          
             
            
              
                
                  
                    ( 
                   
                  
                      
                      
                   
                  
                    ) 
                   
                 
               
             
             
           
          ) 
         
       
     
    {\ displaystyle \ left (\! {\ tbinom {~} {~}} \! \ right)} 
   
  
 
  
    
      
        
          ( 
          
             
            
              
                
                  
                    ( 
                   
                  
                    n 
                    k 
                   
                  
                    ) 
                   
                 
               
             
             
           
          ) 
         
       
     
    {\ displaystyle \ left (\! {\ tbinom {n} {k}} \! \ right)} 
   
  
 
Number of combinations with repetition of from elements
  
    
      
        k 
       
     
    {\ displaystyle k} 
   
 
  
    
      
        n 
       
     
    {\ displaystyle n} 
   
  
Multiset 
 
 
 
U+0028/9
 
 
  
    
      
        
          
            
                
                
             
            ¯ 
           
         
       
     
    {\ displaystyle {\ overline {~~}}} 
   
  
 
  
    
      
        
          n 
          
            
              m 
              ¯ 
             
           
         
       
     
    {\ displaystyle n ^ {\ overline {m}}} 
   
  
 
Increasing factorial from with factors
  
    
      
        n 
       
     
    {\ displaystyle n} 
   
 
  
    
      
        m 
       
     
    {\ displaystyle m} 
   
  
Falling and rising factorial 
 
\overline
 
 
U+0305
 
 
  
    
      
        
          n 
          
            
              m 
              _ 
             
           
         
       
     
    {\ displaystyle n ^ {\ underline {m}}} 
   
  
 
Falling factorial off with factors
  
    
      
        n 
       
     
    {\ displaystyle n} 
   
 
  
    
      
        m 
       
     
    {\ displaystyle m} 
   
  
\underline
 
 
U+0332
 
 
  
    
      
        # 
       
     
    {\ displaystyle \ #} 
   
  
 
  
    
      
        n 
        # 
       
     
    {\ displaystyle n \ #} 
   
  
 
Product of the prime numbers less than or equal to 
  
    
      
        n 
       
     
    {\ displaystyle n} 
   
  
 
Primorial 
 
\#
 
 
U+0023
 
 
 
probability calculation  
symbol
 
use
 
interpretation
 
items
 
Latex
 
HTML
 
Unicode
 
 
  
    
      
        P 
       
     
    {\ displaystyle P} 
   
  
 
  
    
      
        P 
        ( 
        A. 
        ) 
       
     
    {\ displaystyle P (A)} 
   
  
 
Probability of the event 
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
  
 
Probability measure 
 
P
 
 
U+2119
 
 
  
    
      
        ∣ 
       
     
    {\ displaystyle \ mid} 
   
  
 
  
    
      
        P 
        ( 
        A. 
        ∣ 
        B. 
        ) 
       
     
    {\ displaystyle P (A \ mid B)} 
   
  
 
Probability of assuming
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        B. 
       
     
    {\ displaystyle B} 
   
  
 
Conditional probability 
 
\mid
 
 
U+007C
 
 
  
    
      
        E. 
       
     
    {\ displaystyle \ operatorname {E}} 
   
  
 
  
    
      
        E. 
         
        [ 
        X 
        ∣ 
        Y 
        ] 
       
     
    {\ displaystyle \ operatorname {E} [X \ mid Y]} 
   
  
 
Expected value of the random variable due to
  
    
      
        X 
       
     
    {\ displaystyle X} 
   
 
  
    
      
        Y 
       
     
    {\ displaystyle Y} 
   
  
 
Expected value 
 
-
 
U+1D53C
 
U+223C
 
 
  
    
      
        E. 
       
     
    {\ displaystyle \ operatorname {E}} 
   
  
 
  
    
      
        E. 
         
        [ 
        X 
        ] 
       
     
    {\ displaystyle \ operatorname {E} [X]} 
   
  
 
Expected value of the random variable 
  
    
      
        X 
       
     
    {\ displaystyle X} 
   
  
 
-
 
U+1D53C
 
 
  
    
      
        Var 
       
     
    {\ displaystyle \ operatorname {Var}} 
   
  
 
  
    
      
        Var 
         
        [ 
        X 
        ] 
       
     
    {\ displaystyle \ operatorname {Var} [X]} 
   
  
 
Variance of the random variable 
  
    
      
        X 
       
     
    {\ displaystyle X} 
   
  
 
Variance (stochastics) 
 
-
 
-
 
 
  
    
      
        sd 
       
     
    {\ displaystyle \ operatorname {sd}} 
   
  
 
  
    
      
        sd 
         
        [ 
        X 
        ] 
       
     
    {\ displaystyle \ operatorname {sd} [X]} 
   
  
 
Standard deviation of the random variable 
  
    
      
        X 
       
     
    {\ displaystyle X} 
   
  
 
Standard deviation (probability theory) 
 
-
 
-
 
 
  
    
      
        Cov 
       
     
    {\ displaystyle \ operatorname {Cov}} 
   
  
 
  
    
      
        Cov 
         
        [ 
        X 
        , 
        Y 
        ] 
       
     
    {\ displaystyle \ operatorname {Cov} [X, Y]} 
   
  
 
Covariance of the random variables and
  
    
      
        X 
       
     
    {\ displaystyle X} 
   
 
  
    
      
        Y 
       
     
    {\ displaystyle Y} 
   
  
 
Covariance (stochastics) 
 
 
  
    
      
        ρ 
       
     
    {\ displaystyle \ rho} 
   
  
 
  
    
      
        ρ 
        ( 
        X 
        , 
        Y 
        ) 
       
     
    {\ displaystyle \ rho (X, Y)} 
   
  
 
Correlation of the random variables and
  
    
      
        X 
       
     
    {\ displaystyle X} 
   
 
  
    
      
        Y 
       
     
    {\ displaystyle Y} 
   
  
 
Correlation coefficient 
 
\rho
 
ρ
 
U+03C1
 
 
  
    
      
        
          R. 
          
            2 
           
         
       
     
    {\ displaystyle R ^ {2}} 
   
  
 
  
    
      
        ρ 
        ( 
        X 
        , 
        Y 
        
          ) 
          
            2 
           
         
       
     
    {\ displaystyle \ rho (X, Y) ^ {2}} 
   
  
 
Square of the correlation between the random variables and
  
    
      
        X 
       
     
    {\ displaystyle X} 
   
 
  
    
      
        Y 
       
     
    {\ displaystyle Y} 
   
  
 
Coefficient of determination 
 
\rho
 
ρ
 
U+03C1
 
 
  
    
      
        ∼ 
       
     
    {\ displaystyle \ sim} 
   
  
 
  
    
      
        X 
        ∼ 
        F. 
       
     
    {\ displaystyle X \ sim F} 
   
  
 
the random variable follows the distribution
  
    
      
        X 
       
     
    {\ displaystyle X} 
   
 
  
    
      
        F. 
       
     
    {\ displaystyle F} 
   
  
 
Probability distribution 
 
\sim
 
∼
 
U+223C
 
 
  
    
      
        ≁ 
       
     
    {\ displaystyle \ nsim} 
   
  
 
  
    
      
        X 
        ≁ 
        F. 
       
     
    {\ displaystyle X \ nsim F} 
   
  
 
the random variable does not follow the distribution
  
    
      
        X 
       
     
    {\ displaystyle X} 
   
 
  
    
      
        F. 
       
     
    {\ displaystyle F} 
   
  
 
\nsim
 
≁
 
U+2241
 
 
  
    
      
        
          
            
              
                ∼ 
               
              
                a 
                . 
                s 
                . 
               
             
           
         
       
     
    {\ displaystyle {\ stackrel {as} {\ sim}}} 
   
  
 
  
    
      
        X 
         
        
          
            
              
                ∼ 
               
              
                a 
                . 
                s 
                . 
               
             
           
         
         
        F. 
       
     
    {\ displaystyle X \; {\ stackrel {as} {\ sim}} \; F} 
   
  
 
the random variable almost certainly  follows the distribution
  
    
      
        X 
       
     
    {\ displaystyle X} 
   
 
  
    
      
        F. 
       
     
    {\ displaystyle F} 
   
  
  
\approx
 
≈
 
U+2248
 
 
  
    
      
        
          
            
              
                ∼ 
               
              
                a 
               
             
           
         
       
     
    {\ displaystyle {\ stackrel {a} {\ sim}}} 
   
  
 
  
    
      
        X 
         
        
          
            
              
                ∼ 
               
              
                a 
               
             
           
         
         
        F. 
       
     
    {\ displaystyle X \; {\ stackrel {a} {\ sim}} \; F} 
   
  
 
the random variable approximately follows the distribution
  
    
      
        X 
       
     
    {\ displaystyle X} 
   
 
  
    
      
        F. 
       
     
    {\ displaystyle F} 
   
  
 
\approx
 
≈
 
U+2248
 
 
  
    
      
        
          
            
              
                ∼ 
               
              
                
                  H 
                  
                    0 
                   
                 
               
             
           
         
       
     
    {\ displaystyle {\ stackrel {H_ {0}} {\ sim}}} 
   
  
 
  
    
      
        X 
         
        
          
            
              
                ∼ 
               
              
                
                  H 
                  
                    0 
                   
                 
               
             
           
         
         
        F. 
       
     
    {\ displaystyle X \; {\ stackrel {H_ {0}} {\ sim}} \; F} 
   
  
 
the random variable follows the distribution under the null hypothesis 
  
    
      
        X 
       
     
    {\ displaystyle X} 
   
 
  
    
      
        F. 
       
     
    {\ displaystyle F} 
   
  
 
\sim
 
∼
 
U+223C
 
 
  
    
      
        ⊥ 
         
         
         
        ⊥ 
       
     
    {\ displaystyle \ perp \! \! \! \ perp} 
   
  
 
  
    
      
        X 
        ⊥ 
         
         
         
        ⊥ 
        Y 
       
     
    {\ displaystyle X \ perp \! \! \! \ perp Y} 
   
  
 
the random variables and are stochastically independent
  
    
      
        X 
       
     
    {\ displaystyle X} 
   
 
  
    
      
        Y 
       
     
    {\ displaystyle Y} 
   
  
Stochastically independent random variables 
 
-
 
-
 
-
 
 
 
Note:  there are some notation variants for the operators; instead of round brackets, square brackets are often used.
statistics  
symbol
 
use
 
interpretation
 
items
 
Latex
 
HTML
 
Unicode
 
 
  
    
      
        
          
            
                
              ~ 
             
           
         
       
     
    {\ displaystyle {\ tilde {~}}} 
   
  
 
  
    
      
        
          
            
              x 
              ~ 
             
           
         
       
     
    {\ displaystyle {\ tilde {x}}} 
   
  
 
Median of the values 
  
    
      
        
          x 
          
            1 
           
         
        , 
        ... 
        , 
        
          x 
          
            n 
           
         
       
     
    {\ displaystyle x_ {1}, \ ldots, x_ {n}} 
   
  
 
Median 
 
\tilde
 
 
U+0303
 
 
  
    
      
        
          
            
                
              ¯ 
             
           
         
       
     
    {\ displaystyle {\ bar {~}}} 
   
  
 
  
    
      
        
          
            
              X 
              ¯ 
             
           
         
       
     
    {\ displaystyle {\ bar {X}}} 
   
  
 
Sample mean of the random variable 
  
    
      
        
          X 
          
            1 
           
         
        , 
        ... 
        , 
        
          X 
          
            n 
           
         
       
     
    {\ displaystyle X_ {1}, \ ldots, X_ {n}} 
   
  
 
Average 
 
\bar
 
 
U+0305
 
 
  
    
      
        
          
            
                
              ¯ 
             
           
         
       
     
    {\ displaystyle {\ bar {~}}} 
   
  
 
  
    
      
        
          
            
              x 
              ¯ 
             
           
         
       
     
    {\ displaystyle {\ bar {x}}} 
   
  
 
Mean of the values 
  
    
      
        
          x 
          
            1 
           
         
        , 
        ... 
        , 
        
          x 
          
            n 
           
         
       
     
    {\ displaystyle x_ {1}, \ ldots, x_ {n}} 
   
  
 
Average 
 
\bar
 
 
U+0305
 
 
  
    
      
        ⟨ 
          
          
        ⟩ 
       
     
    {\ displaystyle \ langle ~~ \ rangle} 
   
  
 
  
    
      
        ⟨ 
        f 
        ⟩ 
       
     
    {\ displaystyle \ langle f \ rangle} 
   
  
 
Mean of all values of a function (in physics)
  
    
      
        f 
       
     
    {\ displaystyle f} 
   
  
\langle \rangle
 
⟨ ⟩
 
U+27E8/9
 
 
  
    
      
        
          
            
                
              ^ 
             
           
         
       
     
    {\ displaystyle {\ hat {~}}} 
   
  
 
  
    
      
        
          
            
              p 
              ^ 
             
           
         
       
     
    {\ displaystyle {\ hat {p}}} 
   
  
 
Estimated value for the parameter 
  
    
      
        p 
       
     
    {\ displaystyle p} 
   
  
 
Estimator 
 
\hat
 
 
U+0302
 
 
 
logic  
Definition sign  
symbol
 
use
 
interpretation
 
items
 
Latex
 
HTML
 
Unicode
 
 
  
    
      
        : 
       
     
    {\ displaystyle:} 
   
  
 
  
    
      
        A. 
        : = 
        B. 
       
     
    {\ displaystyle A: = B} 
   
  
 
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
  is set
 equal by definition
  
    
      
        B. 
       
     
    {\ displaystyle B} 
   
  
definition 
 
:
 
 
U+003A
 
 
  
    
      
        A. 
        : ⇔ 
        B. 
       
     
    {\ displaystyle A: \ Leftrightarrow B} 
   
  
 
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
  is set
 equivalent to by definition
  
    
      
        B. 
       
     
    {\ displaystyle B} 
   
  
 
 
Junctures  
symbol
 
use
 
interpretation
 
items
 
Latex
 
HTML
 
Unicode
 
 
  
    
      
        ∧ 
       
     
    {\ displaystyle \ land} 
   
  
 
  
    
      
        A. 
        ∧ 
        B. 
       
     
    {\ displaystyle A \ land B} 
   
  
 
Statement and statement
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        B. 
       
     
    {\ displaystyle B} 
   
  
 
Conjunction (logic) 
 
\land
 
∧
 
U+2227
 
 
  
    
      
        ∨ 
       
     
    {\ displaystyle \ lor} 
   
  
 
  
    
      
        A. 
        ∨ 
        B. 
       
     
    {\ displaystyle A \ lor B} 
   
  
 
Statement or statement (or both)
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        B. 
       
     
    {\ displaystyle B} 
   
  
Disjunction 
 
\lor
 
∨
 
U+2228
 
 
  
    
      
        ⇔ 
       
     
    {\ displaystyle \ Leftrightarrow} 
   
  
 
  
    
      
        A. 
        ⇔ 
        B. 
       
     
    {\ displaystyle A \ Leftrightarrow B} 
   
  
 
Statement follows from statement and vice versa
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        B. 
       
     
    {\ displaystyle B} 
   
  
Logical equivalence 
 
\Leftrightarrow 
 
⇔
 
U+21D4
 
 
  
    
      
        ↔ 
       
     
    {\ displaystyle \ leftrightarrow} 
   
  
 
  
    
      
        A. 
        ↔ 
        B. 
       
     
    {\ displaystyle A \ leftrightarrow B} 
   
  
 
\leftrightarrow 
 
↔
 
U+2194
 
 
  
    
      
        ⇒ 
       
     
    {\ displaystyle \ Rightarrow} 
   
  
 
  
    
      
        A. 
        ⇒ 
        B. 
       
     
    {\ displaystyle A \ Rightarrow B} 
   
  
 
statement follows statement
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        B. 
       
     
    {\ displaystyle B} 
   
  
 
implication 
 
\Rightarrow
 
⇒
 
U+21D2
 
 
  
    
      
        → 
       
     
    {\ displaystyle \ rightarrow} 
   
  
 
  
    
      
        A. 
        → 
        B. 
       
     
    {\ displaystyle A \ rightarrow B} 
   
  
 
\rightarrow
 
→
 
U+2192
 
 
  
    
      
        ≁ 
       
     
    {\ displaystyle \ nsim} 
   
  
 
  
    
      
        A. 
        ≁ 
        B. 
       
     
    {\ displaystyle A \ nsim B} 
   
  
 
either statement or statement
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        B. 
       
     
    {\ displaystyle B} 
   
  
 
Contravalence  / antivalence
 
\nsim
 
≁
 
U+2241
 
 
  
    
      
        ⊕ 
       
     
    {\ displaystyle \ oplus} 
   
  
 
  
    
      
        A. 
        ⊕ 
        B. 
       
     
    {\ displaystyle A \ oplus B} 
   
  
 
\oplus
 
⊕
 
U+2295
 
 
  
    
      
        ⊻ 
       
     
    {\ displaystyle \ veebar} 
   
  
 
  
    
      
        A. 
         
        ⊻ 
         
        B. 
       
     
    {\ displaystyle A \, \ veebar \, B} 
   
  
 
\veebar
 
 
U+22BB
 
 
  
    
      
        
          
            
              ∨ 
              ˙ 
             
           
         
       
     
    {\ displaystyle {\ dot {\ lor}}} 
   
  
 
  
    
      
        A. 
         
        
          
            
              ∨ 
              ˙ 
             
           
         
         
        B. 
       
     
    {\ displaystyle A \, {\ dot {\ lor}} \, B} 
   
  
 
\dot\lor
 
 
U+2A52
 
 
  
    
      
        ↮ 
       
     
    {\ displaystyle \ nleftrightarrow} 
   
  
 
  
    
      
        A. 
        ↮ 
        B. 
       
     
    {\ displaystyle A \ nleftrightarrow B} 
   
  
 
\nleftrightarrow 
 
 
U+21AE
 
 
  
    
      
        ⇎ 
       
     
    {\ displaystyle \ nLeftrightarrow} 
   
  
 
  
    
      
        A. 
        ⇎ 
        B. 
       
     
    {\ displaystyle A \ nLeftrightarrow B} 
   
  
 
\nLeftrightarrow 
 
 
U+21CE
 
 
  
    
      
        ¬ 
       
     
    {\ displaystyle \ lnot} 
   
  
 
  
    
      
        ¬ 
        A. 
       
     
    {\ displaystyle \ lnot A} 
   
  
 
not statement 
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
  
 
negation 
 
\lnot
 
¬
 
U+00AC
 
 
  
    
      
        
          
            
                
                
             
            ¯ 
           
         
       
     
    {\ displaystyle {\ overline {~~}}} 
   
  
 
  
    
      
        
          
            A. 
            ¯ 
           
         
       
     
    {\ displaystyle {\ overline {A}}} 
   
  
 
\bar
 
 
U+0305
 
 
 
Quantifiers  
symbol
 
use
 
interpretation
 
items
 
Latex
 
HTML
 
Unicode
 
 
  
    
      
        ∀ 
       
     
    {\ displaystyle \ forall} 
   
  
 
  
    
      
        ∀ 
         
        x 
       
     
    {\ displaystyle \ forall \, x} 
   
  
 
for all elements 
  
    
      
        x 
       
     
    {\ displaystyle x} 
   
  
 
Universal quantifier 
 
\forall
 
∀
 
U+2200
 
 
  
    
      
        ⋀ 
       
     
    {\ displaystyle \ bigwedge} 
   
  
 
  
    
      
        
          ⋀ 
          
            x 
           
         
       
     
    {\ displaystyle \ bigwedge _ {x}} 
   
  
 
\bigwedge
 
 
U+22C0
 
 
  
    
      
        ∃ 
       
     
    {\ displaystyle \ exists} 
   
  
 
  
    
      
        ∃ 
         
        x 
       
     
    {\ displaystyle \ exists \, x} 
   
  
 
there is at least one element 
  
    
      
        x 
       
     
    {\ displaystyle x} 
   
  
 
Existential quantifier 
 
\exists
 
∃
 
U+2203
 
 
  
    
      
        ⋁ 
       
     
    {\ displaystyle \ bigvee} 
   
  
 
  
    
      
        
          ⋁ 
          
            x 
           
         
       
     
    {\ displaystyle \ bigvee _ {x}} 
   
  
 
\bigvee
 
 
U+22C1
 
 
  
    
      
        ∃ 
        ! 
       
     
    {\ displaystyle \ exists!} 
   
  
 
  
    
      
        ∃ 
        ! 
         
        x 
       
     
    {\ displaystyle \ exists! \, x} 
   
  
 
there is exactly one element 
  
    
      
        x 
       
     
    {\ displaystyle x} 
   
  
 
Number quantifier 
 
\exists!
 
∃
 
U+2203
 
 
  
    
      
        
          ⋁ 
          
            ⋅ 
           
         
       
     
    {\ displaystyle \ bigvee ^ {\ centerdot}} 
   
  
 
  
    
      
        
          ⋁ 
          
            x 
           
          
            ⋅ 
           
         
       
     
    {\ displaystyle \ bigvee _ {x} ^ {\ centerdot}} 
   
  
 
\dot\bigvee
 
 
U+2A52
 
 
  
    
      
        ∄ 
       
     
    {\ displaystyle \ nexists} 
   
  
 
  
    
      
        ∄ 
         
        x 
       
     
    {\ displaystyle \ nexists \, x} 
   
  
 
there is no element 
  
    
      
        x 
       
     
    {\ displaystyle x} 
   
  
 
Existential quantifier 
 
\nexists
 
 
U+2204
 
 
 
Deduction sign  
symbol
 
use
 
interpretation
 
items
 
Latex
 
HTML
 
Unicode
 
 
  
    
      
        ⊢ 
       
     
    {\ displaystyle \ vdash} 
   
  
 
  
    
      
        A. 
        ⊢ 
        B. 
       
     
    {\ displaystyle A \ vdash B} 
   
  
 
Statement is syntactically from statement derivable
  
    
      
        B. 
       
     
    {\ displaystyle B} 
   
 
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
  
Derivability relation 
 
\vdash
 
 
U+22A2
 
 
  
    
      
        ⊨ 
       
     
    {\ displaystyle \ models} 
   
  
 
  
    
      
        A. 
        ⊨ 
        B. 
       
     
    {\ displaystyle A \ models B} 
   
  
 
Statement follows semantically from statement
  
    
      
        B. 
       
     
    {\ displaystyle B} 
   
 
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
  
 
conclusion 
 
\models, \vDash
 
⊨
 
U+22A8
 
 
  
    
      
        ⊨ 
        A. 
       
     
    {\ displaystyle \ models A} 
   
  
 
The statement is generally valid
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
  
Tautology (logic) 
 
 
  
    
      
        ⊤ 
       
     
    {\ displaystyle \ top} 
   
  
 
  
    
      
        A. 
        ⊤ 
       
     
    {\ displaystyle A \ top} 
   
  
 
\top
 
⊥
 
U+22A4
 
 
  
    
      
        ⊥ 
       
     
    {\ displaystyle \ bot} 
   
  
 
  
    
      
        A. 
        ⊥ 
       
     
    {\ displaystyle A \ bot} 
   
  
 
Statement is contradicting itself
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
  
Contradiction 
 
\bot
 
 
U+22A5
 
 
  
    
      
        ∴ 
       
     
    {\ displaystyle \ therefore} 
   
  
 
  
    
      
        A. 
        ∴ 
        B. 
       
     
    {\ displaystyle A \ therefore B} 
   
  
 
Statement is true, therefore statement is also true
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        B. 
       
     
    {\ displaystyle B} 
   
  
Derivation (logic) 
 
\therefore
 
 
U+2234
 
 
  
    
      
        ∵ 
       
     
    {\ displaystyle \ because} 
   
  
 
  
    
      
        A. 
        ∵ 
        B. 
       
     
    {\ displaystyle A \ because B} 
   
  
 
Statement is true, because statement is also true
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        B. 
       
     
    {\ displaystyle B} 
   
  
\because
 
 
U+2235
 
 
↯
 
 
Contradiction
 
Proof of contradiction 
 
\lightning
 
 
U+21AF
 
 
  
    
      
        ◼ 
       
     
    {\ displaystyle \ blacksquare} 
   
  
 
 
End of proof
 
quod erat demonstrandum 
 
\blacksquare
 
 
U+220E
 
 
  
    
      
        ◻ 
       
     
    {\ displaystyle \ Box} 
   
  
 
\Box
 
 
U+25A1
 
 
 
See also  
literature  
Tilo Arens, Frank Hettlich, Christian Karpfinger, Ulrich Kockelkorn, Klaus Lichtenegger, Hellmuth Stachel  : Mathematics  . 2nd Edition. Spektrum Akademischer Verlag, 2011, ISBN 3-8274-2347-3  , pp.  1483  ff  .  
 
Wolfgang Hackbusch  : Paperback of Mathematics, Volume 1  . 3. Edition. Springer, 2010, ISBN 3-8351-0123-4  , pp.  1275  ff  .  
 
German Institute for Standardization  : DIN 1302: General mathematical symbols and terms  , Beuth-Verlag  , 1999. 
German Institute for Standardization: DIN 1303: vectors, matrices, tensors; Signs and terms  , Beuth-Verlag, 1987. 
International organization for standardization  : DIN EN ISO 80000-2: Quantities and units - Part 2: Mathematical symbols for science and technology  , 2013. 
 
Web links  
 
<img src="https://de.wikipedia.org//de.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">