Jump to content

Calcium

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Ameliorate! (talk | contribs) at 11:02, 8 September 2008 (Reverted edits by 195.225.189.135 to last version by Plantsurfer (HG)). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Calcium, 20Ca
Calcium
Appearancedull gray, silver; with a pale yellow tint[1]
Standard atomic weight Ar°(Ca)
Calcium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Mg

Ca

Sr
potassiumcalciumscandium
Atomic number (Z)20
Groupgroup 2 (alkaline earth metals)
Periodperiod 4
Block  s-block
Electron configuration[Ar] 4s2
Electrons per shell2, 8, 8, 2
Physical properties
Phase at STPsolid
Melting point1115 K ​(842 °C, ​1548 °F)
Boiling point1757 K ​(1484 °C, ​2703 °F)
Density (at 20° C)1.526 g/cm3[4]
when liquid (at m.p.)1.378 g/cm3
Heat of fusion8.54 kJ/mol
Heat of vaporization154.7 kJ/mol
Molar heat capacity25.929 J/(mol·K)
Vapor pressure
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 864 956 1071 1227 1443 1755
Atomic properties
Oxidation states+1,[5] +2 (a strongly basic oxide)
ElectronegativityPauling scale: 1.00
Ionization energies
  • 1st: 589.8 kJ/mol
  • 2nd: 1145.4 kJ/mol
  • 3rd: 4912.4 kJ/mol
  • (more)
Atomic radiusempirical: 197 pm
Covalent radius176±10 pm
Van der Waals radius231 pm
Color lines in a spectral range
Spectral lines of calcium
Other properties
Natural occurrenceprimordial
Crystal structureface-centered cubic (fcc) (cF4)
Lattice constant
Face-centered cubic crystal structure for calcium
a = 558.8 pm (at 20 °C)[4]
Thermal expansion22.27×10−6/K (at 20 °C)[4]
Thermal conductivity201 W/(m⋅K)
Electrical resistivity33.6 nΩ⋅m (at 20 °C)
Magnetic orderingdiamagnetic
Molar magnetic susceptibility+40.0×10−6 cm3/mol[6]
Young's modulus20 GPa
Shear modulus7.4 GPa
Bulk modulus17 GPa
Speed of sound thin rod3810 m/s (at 20 °C)
Poisson ratio0.31
Mohs hardness1.75
Brinell hardness170–416 MPa
CAS Number7440-70-2
History
Discovery and first isolationHumphry Davy (1808)
Isotopes of calcium
Main isotopes[7] Decay
abun­dance half-life (t1/2) mode pro­duct
40Ca 96.9% stable
41Ca trace 9.94×104 y ε 41K
42Ca 0.647% stable
43Ca 0.135% stable
44Ca 2.09% stable
45Ca synth 163 d β 45Sc
46Ca 0.004% stable
47Ca synth 4.5 d β 47Sc
48Ca 0.187% 6.4×1019 y ββ 48Ti
 Category: Calcium
| references

Calcium (Template:PronEng) is the chemical element with the symbol Ca and atomic number 20. It has an atomic mass of 40.078. Calcium is a soft grey alkaline earth metal, and is the fifth most abundant element by mass in the Earth's crust. Calcium is also the fifth most abundant dissolved ion in seawater by both molarity and mass, after sodium, chloride, magnesium, and sulfate.[8]

Calcium is essential for living organisms, particularly in cell physiology, where movement of the calcium ion Ca2+ into and out of the cytoplasm functions as a signal for many cellular processes. As a major material used in mineralization of bones and shells, calcium is the most abundant metal by mass in many animals.

Notable characteristics

Chemically calcium is reactive and soft for a metal (though harder than lead, it can be cut with a knife with difficulty). It is a silvery metallic element that must be extracted by electrolysis from a fused salt like calcium chloride.[9] Once produced, it rapidly forms a grey-white oxide and nitride coating when exposed to air. It is somewhat difficult to ignite, unlike magnesium, but when lit, the metal burns in air with a brilliant high-intensity red light. Calcium metal reacts with water, evolving hydrogen gas at a rate rapid enough to be noticeable, but not fast enough at room temperature to generate much heat. In powdered form, however, the reaction with water is extremely rapid, as the increased surface area of the powder accelerates the reaction with the water. Part of the slowness of the calcium-water reaction results from the metal being partly protected by insoluble white calcium hydroxide. In water solutions of acids where the salt is water soluble, calcium reacts vigorously.

Calcium, though it has a higher resistivity than copper or aluminium, weight for weight, allowing for its much lower density calcium is a rather better conductor than either. However, its use in terrestrial applications is usually limited by its high reactivity with air. In vacuum use, calcium tends to sublime unless plated.

Calcium salts are colorless from any contribution of the calcium, and ionic solutions of calcium (Ca2+) are colorless as well. Many calcium salts are not soluble in water. When in solution, the calcium ion to the human taste varies remarkably, being reported as mildly salty, sour, "mineral like" or even "soothing." It is apparent that many animals can taste, or develop a taste, for calcium, and use this sense to detect the mineral in salt licks or other sources.[10] In human nutrition, soluble calcium salts may be added to tart juices without much effect to the average palate.

Calcium is the fifth most abundant element by mass in the human body, where it is a common cellular ionic messenger with many functions, and serves also as a structural element in bone. It is the relatively high atomic-numbered calcium in the skeleton which causes bone to be radio-opaque. Of the human body's solid components after drying (as for example, after cremation), about a third of the total mass is the approximately one kilogram of calcium which composes the average skeleton (the remainder being mostly phosphorus and oxygen).

Occurrence

Calcium is not naturally found in its elemental state. Calcium occurs most commonly in sedimentary rocks in the minerals calcite, dolomite and gypsum. It also occurs in igneous and metamorphic rocks chiefly in the silicate minerals: plagioclase, amphiboles, pyroxenes and garnets.

See also Calcium minerals.

Applications

Some uses are:

Calcium compounds

H and K lines

In the visible portion of the spectrum of many stars, including the Sun, strong absorption lines of singly-ionized calcium are shown. Prominent among these are the H-line at 3968.5 Å and the K line at 3933.7 Å of singly-ionized calcium, or Ca II. For the Sun and stars with low temperatures, the prominence of the H and K lines can be an indication of strong magnetic activity in the chromosphere. Measurement of periodic variations of these active regions can also be used to deduce the rotation periods of these stars.[11]

History

Calcium (Latin calx, meaning "limestone") was known as early as the first century when the Ancient Romans prepared lime as calcium oxide. It was not isolated until 1808 in England when Sir Humphry Davy electrolyzed a mixture of lime and mercuric oxide. Davy was trying to isolate calcium; when he heard that Swedish chemist Jöns Jakob Berzelius and Pontin prepared calcium amalgam by electrolyzing lime in mercury, he tried it himself. He worked with electrolysis throughout his life and also discovered/isolated sodium, potassium, magnesium, boron and barium.

Compounds

Calcium, combined with phosphate to form hydroxylapatite, is the mineral portion of human and animal bones and teeth. The mineral portion of some corals can also be transformed into hydroxylapatite.

Calcium oxide (lime) is used in many chemical refinery processes and is made by heating and carefully adding water to limestone. When lime is mixed with sand, it hardens into a mortar and is turned into plaster by carbon dioxide uptake. Mixed with other compounds, lime forms an important part of Portland cement.

Calcium carbonate (CaCO3) is one of the common compounds of calcium. It is heated to form quicklime (CaO), which is then added to water (H2O). This forms another material known as slaked lime (Ca(OH)2), which is an inexpensive base material used throughout the chemical industry. Chalk, marble, and limestone are all forms of calcium carbonate.

When water percolates through limestone or other soluble carbonate rocks, it partially dissolves the rock and causes cave formation and characteristic stalactites and stalagmites and also forms hard water. Other important calcium compounds are calcium nitrate, calcium sulfide, calcium chloride, calcium carbide, calcium cyanamide and calcium hypochlorite.

Isotopes

Calcium has four stable isotopes (40Ca and 42Ca through 44Ca), plus two more isotopes (46Ca and 48Ca) that have such long half-lives that for all practical purposes they can be considered stable. It also has a cosmogenic isotope, radioactive 41Ca, which has a half-life of 103,000 years. Unlike cosmogenic isotopes that are produced in the atmosphere, 41Ca is produced by neutron activation of 40Ca. Most of its production is in the upper metre or so of the soil column, where the cosmogenic neutron flux is still sufficiently strong. 41Ca has received much attention in stellar studies because it decays to 41K, a critical indicator of solar-system anomalies.

97% of naturally occurring calcium is in the form of 40Ca. 40Ca is one of the daughter products of 40K decay, along with 40Ar. While K-Ar dating has been used extensively in the geological sciences, the prevalence of 40Ca in nature has impeded its use in dating. Techniques using mass spectrometry and a double spike isotope dilution have been used for K-Ca age dating.

The most abundant isotope, 40Ca, has a nucleus of 20 protons and 20 neutrons. This is the heaviest stable isotope of any element which has equal numbers of protons and neutrons. In supernova explosions, calcium is formed from the reaction of carbon with various numbers of alpha particles (helium nuclei), until the most common calcium isotope (containing 10 helium nuclei) has been synthesized.[citation needed]

Nutrition

Recommended Adequate Intake by the IOM for Calcium:[12]
Age Calcium (mg/day)
0–6 months 210
7–12 months 270
1–3 years 500
4–8 years 800
9–18 years 1300
19–50 years 1000
51+ years 1200

Calcium is an important component of a healthy diet. Calcium is essential for the normal growth and maintenance of bones and teeth, and calcium requirements must be met throughout life. Long-term calcium deficiency can lead to rickets and poor blood clotting and in case of a menopausal woman, it can lead to osteoporosis, in which the bone deteriorates and there is an increased risk of fractures. While a lifelong deficit can affect bone and tooth formation, over-retention can cause hypercalcemia (elevated levels of calcium in the blood), impaired kidney function and decreased absorption of other minerals.[13] High calcium intakes or high calcium absorption were previously thought to contribute to the development of kidney stones. However, more recent studies show that high dietary calcium intakes actually decrease the risk for kidney stones.[14] Vitamin D is needed to absorb calcium.

Dairy products, such as milk and cheese, are a well-known source of calcium. However, some individuals are allergic to dairy products and even more people, particularly those of non Indo-European descent, are lactose-intolerant, leaving them unable to consume non-fermented dairy products in quantities larger than about half a liter per serving. Others, such as vegans, avoid dairy products for ethical and health reasons. Fortunately, many good sources of calcium exist. These include seaweeds such as kelp, wakame and hijiki; nuts and seeds (like almonds and sesame); blackstrap molasses; beans; oranges; figs; quinoa; amaranth; collard greens; okra; rutabaga; broccoli; dandelion leaves; kale; and fortified products such as orange juice and soy milk. (However, calcium fortified orange juice often contains vitamin D3 derived from lanolin, and is thus unacceptable for vegans.[15] ) An overlooked source of calcium is eggshell, which can be ground into a powder and mixed into food or a glass of water.[16][17][18] Cultivated vegetables generally have less calcium than wild plants.[19]

The calcium content of most foods can be found in the USDA National Nutrient Database.[20]

Dietary calcium supplements

500 milligram calcium supplements made from calcium carbonate

Calcium supplements are used to prevent and to treat calcium deficiencies. Most experts recommend that supplements be taken with food and that no more than 600 mg should be taken at a time because the percent of calcium absorbed decreases as the amount of calcium in the supplement increases.[12] It is recommended to spread doses throughout the day. Recommended daily calcium intake for adults ranges from 1000 to 1500 mg. It is recommended to take supplements with food to aid in absorption.

Vitamin D is added to some calcium supplements. Vitamin D is not necessary, but it might be beneficial if the person has low vitamin D status. Proper vitamin D status is important because vitamin D is converted to a hormone in the body which then induces the synthesis of intestinal proteins responsible for calcium absorption.[21]

  • The absorption of calcium from most food and commonly-used dietary supplements is very similar.[22] This is contrary to what many calcium supplement manufacturers claim in their promotional materials.
  • Milk is an excellent source of dietary calcium because it has a high concentration of calcium and the calcium in milk is excellently absorbed.[23]
  • Calcium carbonate is the most common and least expensive calcium supplement. It should be taken with food. The absorption of calcium from calcium carbonate is similar to the absorption of calcium from milk.[24] While most people digest calcium carbonate very well, some might develop gastrointestinal discomfort or gas. Taking magnesium with it can help to avoid constipation. Calcium carbonate is 40% elemental calcium. 1000 mg will provide 400 mg of calcium. However, supplement labels will usually indicate how much calcium is present in each serving, not how much calcium carbonate is present.
  • Antacids, such as Tums, frequently contain calcium carbonate, and are a very commonly-used, inexpensive calcium supplement.
  • Coral Calcium is a salt of calcium derived from fossilized coral reefs. Coral calcium is composed of calcium carbonate and trace minerals.
  • Calcium citrate can be taken without food and is the supplement of choice for individuals with achlorhydria or who are taking histamine-2 blockers or proton-pump inhibitors.[25] It is more easily digested and absorbed than calcium carbonate if taken on empty stomach and less likely to cause constipation and gas than calcium carbonate. It also has a lower risk of contributing to the formation of kidney stones. Calcium citrate is about 21% elemental calcium. 1000 mg will provide 210 mg of calcium. It is more expensive than calcium carbonate and more of it must be taken to get the same amount of calcium.
  • Calcium phosphate costs more than calcium carbonate, but less than calcium citrate. It is easily absorbed and is less likely to cause constipation and gas than either.
  • Calcium lactate has similar absorption as calcium carbonate[26], but is more expensive. Calcium lactate and calcium gluconate are less concentrated forms of calcium and are not practical oral supplements.[25]
  • Calcium chelates are synthetic calcium compunds, with calcium bound to an organic molecule, such as malate, aspartate, or fumarate. These forms of calcium may be better absorbed on an empty stomach. However, in general they are absorbed similarly to calcium carbonate and other common calcium supplements when taken with food.[27] The 'chelate' mimics the action that natural food performs by keeping the calcium soluble in the intestine. Thus, on an empty stomach, in some individuals, chelates might theoretically be absorbed better.
  • Microcrystalline hydroxyapatite (MH) is marketed as a calcium supplement, and has in some randomized trials been found to be more effective than calcium carbonate.
  • Orange juice with calcium added is a good dietary source for persons who have lactose intolerance.

The National Nutritional Food Association — NNFA (Newport Beach, Calif.) defines a chelate very specifically, and several criteria must be met in order for chelation to actually occur. Some of the claimed "chelates" on the market are the various Krebs (Citric Acid) Cycle chelates, such as citrate, malate, and aspartate. Dicalcium malate (chelated with malic acid) is a newer form of a true calcium chelate. It contains a high amount of elemental calcium (30%).

In July 2006, a report citing research from Fred Hutchinson Cancer Research Center in Seattle, Washington claimed that women in their 50s gained 5 pounds less in a period of 10 years by taking more than 500 mg of calcium supplements than those who did not. However, the doctor in charge of the study, Dr. Alejandro J. Gonzalez also noted it would be "going out on a limb" to suggest calcium supplements as a weight-limiting aid.[28]

Prevention of fractures due to osteoporosis

Such studies often do not test calcium alone, but rather combinations of calcium and vitamin D. Randomized controlled trials found both positive[29][30] and negative[31][32][33][34] effects. The different results may be explained by doses of calcium and underlying rates of calcium supplementation in the control groups.[35] However, it is clear that increasing the intake of calcium promotes deposition of calcium in the bones, where it is of more benefit in preventing the compression fractures resulting from the osteoporotic thinning of the dendritic web of the bodies of the vertebrae, than it is at preventing the more serious cortical bone fractures which happen at hip and wrist.

Prevention of cancer?

A meta-analysis[30] by the international Cochrane Collaboration of two randomized controlled trials[36][37]found that calcium "might contribute to a moderate degree to the prevention of adenomatous colonic polyps".

More recent studies were conflicting, and one which was positive for effect (Lappe, et al.) did control for a possible anti-carcinogenic effect of vitamin D, which was found to be an independent positive influence from calcium-alone on cancer risk (see second study below) [38].

See also

Notes

  1. ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 112. ISBN 978-0-08-037941-8.
  2. ^ "Standard Atomic Weights: Calcium". CIAAW. 1983.
  3. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  4. ^ a b c Arblaster, John W. (2018). Selected Values of the Crystallographic Properties of Elements. Materials Park, Ohio: ASM International. ISBN 978-1-62708-155-9.
  5. ^ Krieck, Sven; Görls, Helmar; Westerhausen, Matthias (2010). "Mechanistic Elucidation of the Formation of the Inverse Ca(I) Sandwich Complex [(thf)3Ca(μ-C6H3-1,3,5-Ph3)Ca(thf)3] and Stability of Aryl-Substituted Phenylcalcium Complexes". Journal of the American Chemical Society. 132 (35): 12492–12501. doi:10.1021/ja105534w. PMID 20718434.
  6. ^ Weast, Robert (1984). CRC, Handbook of Chemistry and Physics. Boca Raton, Florida: Chemical Rubber Company Publishing. pp. E110. ISBN 0-8493-0464-4.
  7. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  8. ^ chapter5
  9. ^ Pauling, Linus General Chemistry p. 627, 1970 ed. Dover Publications
  10. ^ Calcium: Taste, Intake, and Appetite - Tordoff 81 (4): 1567 - Physiological Reviews
  11. ^ Staff (1995). "H-K Project". Mount Wilson Observatory. Retrieved 2006-08-10.
  12. ^ a b Dietary Supplement Fact Sheet: Calcium
  13. ^ Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, Food and Nutrition Board, Institute of Medicine. Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D and fluoride. Washington DC: The National Academies Press, 1997
  14. ^ Curhan G, Willett WC, Rimm E, Stampher MJ. A prospective study of dietary calcium and other nutrients and the risk of symptomatic kidney stones. N Engl J Med 1993;328:833-8
  15. ^ "Sources of vitamin D in orange juice".
  16. ^ Anne Schaafsma, Gerard M Beelen (1999). "Eggshell powder, a comparable or better source of calcium than purified calcium carbonate: piglet studies" (abstract). Journal of the Science of Food and Agriculture. 79 (12): 1596–1600. doi:10.1002/(SICI)1097-0010(199909)79:12<1596::AID-JSFA406>3.0.CO;2-A.
  17. ^ Schaafsma A, van Doormaal JJ, Muskiet FA, Hofstede GJ, Pakan I, van der Veer E (2002). "Positive effects of a chicken eggshell powder-enriched vitamin-mineral supplement on femoral neck bone mineral density in healthy late post-menopausal Dutch women". Br. J. Nutr. 87 (3): 267–75. doi:10.1079/BJNBJN2001515. PMID 12064336. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  18. ^ Rovenský J, Stancíková M, Masaryk P, Svík K, Istok R (2003). "Eggshell calcium in the prevention and treatment of osteoporosis". Int J Clin Pharmacol Res. 23 (2–3): 83–92. PMID 15018022.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  19. ^ Original Wild Foods vs. Available Foods Today for Instinctos
  20. ^ USDA National Nutrient Database
  21. ^ Combs, G: "The Vitamins", page 161. Academic Press, 2008
  22. ^ Weaver, CM: "Calcium" in Present Knowledge in Nutrition, 9th Ed., Vol I, page 377. ILSI Press, 2006.
  23. ^ Weaver, CM: "Calcium" in Present Knowledge in Nutrition, 9th Ed., Vol I, page 377. ILSI Press, 2006
  24. ^ Zhao, Y. et al: "Calcium bioavailability of calcium carbonate fortified soy milk is equivalent to cow's milk in young women", J. Nutr., 135(10):2379
  25. ^ a b Straub, DA: "Calcium supplementation in clinical practice: a review of forms, doses, and indications", Nutr. Clin. Pract., 22(3):286, 2007.
  26. ^ Martin, BR: "Calcium absorption from three salts and CaSo4- fortified bread in premenopausal women", J. Agric. Food Chem., 50:3874, 2002.
  27. ^ Weaver, CM, et al: "Absorption of calcium fumarate salts is equivalent to other calcium salts when measured in the rat model.", J. Agric. Food Chem., 50(17):4974, 2002
  28. ^ Anne Harding. "Calcium May Help With Weight Loss". Retrieved 2007-07-10.
  29. ^ Dawson-Hughes B, Harris SS, Krall EA, Dallal GE (1997). "Effect of calcium and vitamin D supplementation on bone density in men and women 65 years of age or older". N. Engl. J. Med. 337 (10): 670–6. PMID 9278463.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  30. ^ a b Weingarten MA, Zalmanovici A, Yaphe J (2005). "Dietary calcium supplementation for preventing colorectal cancer and adenomatous polyps". Cochrane database of systematic reviews (Online) (3): CD003548. doi:10.1002/14651858.CD003548.pub3. PMID 16034903.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  31. ^ Jackson RD, LaCroix AZ, Gass M; et al. (2006). "Calcium plus vitamin D supplementation and the risk of fractures". N. Engl. J. Med. 354 (7): 669–83. doi:10.1056/NEJMoa055218. PMID 16481635. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
  32. ^ Grant AM, Avenell A, Campbell MK; et al. (2005). "Oral vitamin D3 and calcium for secondary prevention of low-trauma fractures in elderly people (Randomised Evaluation of Calcium Or vitamin D, RECORD): a randomised placebo-controlled trial". Lancet. 365 (9471): 1621–8. doi:10.1016/S0140-6736(05)63013-9. PMID 15885294. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
  33. ^ Porthouse J, Cockayne S, King C; et al. (2005). "Randomised controlled trial of calcium and supplementation with cholecalciferol (vitamin D3) for prevention of fractures in primary care". BMJ. 330 (7498): 1003. doi:10.1136/bmj.330.7498.1003. PMID 15860827. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
  34. ^ Prince RL, Devine A, Dhaliwal SS, Dick IM (2006). "Effects of calcium supplementation on clinical fracture and bone structure: results of a 5-year, double-blind, placebo-controlled trial in elderly women". Arch. Intern. Med. 166 (8): 869–75. doi:10.1001/archinte.166.8.869. PMID 16636212.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  35. ^ Fletcher RH (2006). "Calcium plus vitamin D did not prevent hip fracture or colorectal cancer in postmenopausal women" (subscription required). ACP J. Club. 145 (1): 4–5. PMID 16813354.
  36. ^ Baron JA, Beach M, Mandel JS; et al. (1999). "Calcium supplements for the prevention of colorectal adenomas. Calcium Polyp Prevention Study Group". N. Engl. J. Med. 340 (2): 101–7. PMID 9887161. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
  37. ^ Bonithon-Kopp C, Kronborg O, Giacosa A, Räth U, Faivre J (2000). "Calcium and fibre supplementation in prevention of colorectal adenoma recurrence: a randomised intervention trial. European Cancer Prevention Organisation Study Group". Lancet. 356 (9238): 1300–6. PMID 11073017.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  38. ^ for abstract see PMID 17556697
  39. ^ Wactawski-Wende J, Kotchen JM, Anderson GL; et al. (2006). "Calcium plus vitamin D supplementation and the risk of colorectal cancer". N. Engl. J. Med. 354 (7): 684–96. doi:10.1056/NEJMoa055222. PMID 16481636. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
  40. ^ Lappe JM, Travers-Gustafson D, Davies KM, Recker RR, Heaney RP (2007). "Vitamin D and calcium supplementation reduces cancer risk: results of a randomized trial". Am. J. Clin. Nutr. 85 (6): 1586–91. PMID 17556697.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  41. ^ Lin J, Manson JE, Lee IM, Cook NR, Buring JE, Zhang SM (2007). "Intakes of calcium and vitamin d and breast cancer risk in women". Arch. Intern. Med. 167 (10): 1050–9. doi:10.1001/archinte.167.10.1050. PMID 17533208.{{cite journal}}: CS1 maint: multiple names: authors list (link)

References

  • Rebecca J. Donatelle. Health, The Basics. 6th ed. San Francisco: Pearson Education, Inc. 2005.

External links